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FROM THE EDITOR

 Welcome to the October 2020 issue of Petrophysics. This issue is traditionally dedicated to publishing the “Best Papers” 
presented at the SPWLA Annual Symposium, but we had delays in ranking papers with the online symposium spread over 
6 weeks. As I write this article, it’s been 6 months of working from home in Houston. Progress is being made on a vaccine for 
COVID-19, with research being done in many countries in over two dozen trials. Advances in technology have allowed for 
the acceleration of the vaccine development process. In fact, much of what has been learned from work on HIV has provided 
the science that is helping in this pandemic. However, a public rollout is still a long way off. When a vaccine is approved, the 
manufacture, distribution, and application will take signi  cant time. And, because of all that time, there is a strong desire to 
hurry the process along. It’s gratifying to know that the greater scienti  c community is taking time to do it right, just as we 
do through our peer-review process. 
 Due to low commodity prices and a decline in demand, the oil industry continues to hemorrhage itself with layoffs across 
all major companies. The myth that machine learning is a replacement for people has taken over in company boards. Business 
is business, but loyalty is a two-way street. It’s a challenging time to convince young university students that there is a bright 
future ahead for oil and gas. All we can do is continue to hold ourselves and others accountable, assure safeguards are in place 
and functioning, and we will eventually put this pandemic behind us. It may take time, but as we know from our long history, 
the right behaviors will produce positive outcomes. 
 SPWLA recently sent out a call for Petrophysics tutorials to our members. Tutorials are valuable scienti  c literature as 
they provide a comprehensive overview and summary, and integrate the  ndings of existing literature. They allow readers to 
form an idea about the knowledge on a topic without having to read all the published works in the  eld. Well-written tutorials 
are popular, have a high impact, and receive a lot of citations. Tutorials are submitted using the SPWLA Editorial Manager 
system and go through a peer-review process. If the tutorial is selected for publishing (after review), SPWLA will waive the 
editorial fee ($1,200 for SPWLA members; $1,800 for nonmembers; $600 for authors employed by nonpro  t or academic 
institutions). Additionally, SPWLA will also offer a one-year complimentary membership to the lead author. This is a small 
token of appreciation for the effort our members put into writing high-quality tutorials. There isn’t any speci  c deadline to 
submit the tutorial as the submissions are reviewed continuously.
 In this issue, there are seven excellent papers on topics pertinent to unconventional Wolfcamp shale, carbonate reservoirs 
in the Middle East, and clastic sand/shale reservoirs. Petrophysics is your journal and should meet your needs, so, as always, 
I welcome your feedback.

Mayank Malik
Vice President Publications 
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ABSTRACT

 Large samples (~1 in.) required for standard tests 
are often unavailable in shale formations due to various 
reasons. They are not usually recovered in horizontal 
drilling, which is a common practice in hydraulic 
fracturing. They also delaminate and are dif  cult to 
process in core analysis. Hence, common characterization 
techniques face challenges and lead to uncertainties. A 
new method is needed that can be applied to small pieces, 
such as drill cuttings, which are often the only available 
sources, especially in real-time conditions. The present 

INTRODUCTION

 Hydraulic fracturing has increased energy recovery from 
shale formations within the last decade. Although increased 
production has played a dominant role, the full potential of 
such resources is yet to be realized. One of the key challenges 
is evaluating formations that encounter dif  culties due to the 
lack of large samples.
 Large samples, such as core plugs (~1 in.) or blocks 
that are an important part of formation characterization, are 
not usually available, as recovering them is dif  cult and 
expensive. Large-scale tests are also time consuming and 
expensive. Thus, the data required for detailed analysis are 
scarce, leading to uncertainties in predicting the performance 
of a formation. The lack of large samples is relevant, 
especially to shale formations, as they delaminate and are 
hard to process in core analysis. 
 Drill cuttings are often the only sources available 
and provide useful information for formation evaluation 
(Tutuncu et al., 2005), and predicting the relevant properties 
from drill cuttings is a known problem (Tutuncu et al., 2004)
One appealing test for analyzing cuttings is nanoindentation 
because it can be done on small samples. Nanoindentation 
is based on contact mechanics, which was founded by Hertz 

study proposes a new method applicable to the cuttings to 
determine the geomechanical properties of shale formations 
at the core scale from nanoindentations. In particular, the 
Young’s moduli have been determined from cuttings, and 
the results are compared with those of the core plugs. 
Nanoindentation and the required sample preparation are 
reviewed. The results are promising, and the methodology 
has applications in characterizing formation heterogeneity 
in the petroleum industry.

(1896). He recognized that the mathematics of contact 
between two elastic bodies resembles common problems 
in electricity and proposed  ve key assumptions that were 
adopted later but did not derive from the stress  eld (Huber, 
1904).
 Indentation has a wide range of applications because 
it can be performed easily, and the results provide useful 
information about Young’s modulus (Sneddon, 1965; 
Velez et al., 2001), hardness (Bobji and Biswas, 1998), 
cracking (Lawn et al., 1980), creep (Li et al., 2008), and 
fracture toughness (Laugier, 1987; Volinsky et al., 2003). 
The main idea is that the features of the load-displacement 
curve are related to the specimen deformation. Researchers 
have applied nanoindentation to heterogeneous media, 
characterizing cement (Constantinides et al., 2003; 
Constantinides and Ulm, 2004; Jennings et al., 2005), shale 
(Ulm et al., 2007; Shukla et al., 2013), and even bone (Tai 
et al., 2006), based on conceptual models that have enabled 
them to interpret nano- to microscale deformations of 
forming phases (Ulm and Abousleiman, 2006; Ortega et 
al., 2007; Abedi et al., 2016a; Abedi et al., 2016b). They 
have also used nanoindentation to investigate carbonate 
properties (De Paula et al., 2010; Vialle and Lebedev, 2015; 
Uribe et al., 2016). Research using nanoindentations has 
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focused mainly on the local properties (Deirieh et al., 2012; 
Abedi et al., 2016a; Abedi et al., 2016b). 
 Nanoindentation has also been used to predict the large-
scale properties (Bobko et al., 2011; Li and Sakhaee-Pour, 
2016; Abdolhosseini Qomi et al., 2017; Monfared et al., 
2018). Abdolhosseini Qomi et al. (2017) used statistical 
mechanics to determine the microscale properties from 
nanoscale measurements. Recent investigations (Bobko et 
al., 2011; Abdolhosseini Qomi et al., 2017; Monfared et al., 
2018) based on the multiscale approach provide new insights 
into the interplay of texture and effective bulk properties, but 
they are computationally intensive and hard to implement. 
 In the present study, we propose a new method using 
cuttings to determine the geomechanical properties of a shale 
formation at the core scale. In particular, the Young’s moduli 
of the cuttings are investigated. A review of nanoindentation 
and the required sample preparation are also provided.

NANOINDENTATION

 Nanoindentation consists of touching a material whose 
mechanical properties are unknown with another material 
with known properties. The goal is to extract the unknown 
property from readings of the indenter load and penetration 
depth. The term “indenter” refers to the body to which the 
load is applied, and the “specimen” refers to the penetrated 
medium. The shale sample, whose properties are of interest 
in the present study, is the specimen.
 In nanoindentation, the load is increased from zero to 
some maximum and then decreased to zero. The variation 
of force with displacement provides a useful tool for 
characterizing various properties, but here we focus on those 
that are related to the present study. The penetration depth 
is recorded as the load is decreased (Fig. 1) and is used as 
follows (Pharr et al., 1992):

(1a)

(1b)

where M is the indentation modulus, S is the slope of load-
displacement at the beginning of unloading,  is the shape 
factor, Ac is a projected area, H is the specimen hardness, and 
pmax is the maximum applied load. The shape factor ( ), which 
is a geometric parameter, is equal to 1.03 for the Berkovitch 
tip used in this study. The shape factors for other geometries 
are available in the literature (Riester et al., 2000).

Fig. 1—Schematic of nanoindentation load-displacement where the 
unloading is used to determine the modulus (Eq. 1a).

 The indentation modulus (M) is related to the specimen 
modulus as follows:

(2)

 Where vs is the specimen Poisson’s ratio, Es is the 
specimen modulus, vi is the indenter Poisson’s ratio, and 
Ei is the indenter modulus. The effect of the second term 
on the right side is negligible because Ei is usually much 
larger than Es.
  The indentation modulus is related to the effective 
modulus (= ES/(1 – v2

S )) and not the Young’s modulus (= Es), 
but this does not have a signi  cant impact on the interpreted 
results because the Poisson’s ratio is usually between 0.25 
and 0.3 for most types of rock. More importantly, changing 
the Poisson’s ratio by 0.1 would alter the results by less 
than 1%: 

(3)

where Es shows the change in the interpreted Young’s 
modulus due to the changes in the Poisson’s ratio ( vs). 

CUTTING SCALE

 Nanoindentation was originally developed based on 
Sneddon’s solution to the stress  eld in an in  nite half-space 
(Sneddon, 1965), but is usually applied to  nite-size samples 
with the justi  cation that the sample size is larger than the 
indented (stimulated) volume. Sneddon’s assumptions are 
often overlooked, as recent interpretations have focused 
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on the local properties of porous media (Ulm et al., 2007; 
Shukla et al., 2013; Tai et al., 2006). 
 Our assumption in the present study, which is compatible 
with the Sneddon solution, is that nanoindentation captures 
a bulk property (as opposed to a local property) relevant to 
a volume smaller than the core volume. The rationale is that 
a solid medium undergoes deformations in various locations 
when loaded, even if they are small. The corresponding 
plastic-size zone (Fig. 2) can be approximated as follows 
(Johnson, 1970):

(4)

where c is the plastic-zone radius, a is the projected-area 
radius, v is the Poisson’s ratio, E is the Young’s modulus, 

yield is the yield strength, and  is a geometrical parameter.

Fig. 2—Schematic of the plastic zone characterized in Eq. 4. The 
minimum distance between nanoindentations will be larger than the 
plastic-size zone to avoid interference (spacing > 2c).

 We assume that the geomechanical properties at a 
centimeter-sized scale are equal to the average values 
obtained from nanoindentations at a regularly spaced 
distance if the average value does not change signi  cantly 
when decreasing the distance between the indentations. This 
assumption is based on the notion that each nanoindentation 
characterizes a zone (volume) larger than the plastic zone. 
The corresponding distance is equal to the representative-
elementary-volume (REV) size (Hill, 1963) shown by the red 
square in Fig. 3a, whose repetition creates the bulk volume 
at the large scale (Fig. 3b). The assumption implies that 
there is a scale smaller than the core scale, which controls 
the core-scale properties. 
 We refer to the smaller scale as a cutting scale, which 
is not necessarily equal in different formations. In practice, 
it may not be possible to accurately determine the cutting 
scale for each formation, as only small pieces (cuttings) may 
be available. Nevertheless, measuring the geomechanical 
properties for a sample whose size is close to this scale 
should provide an estimate for the geomechanical properties 
at the core scale. 
 Our objective is to propose a method that can be 
applied to shale cuttings, as opposed to core plugs. The 
spacing between indentations is restricted by the plastic-
zone and core sizes. The plastic-zone size is the lower limit, 
and the core size is the upper limit. The spacing between 
nanoindentations has to be larger than the plastic-zone 
size to avoid interference between the stimulated regions. 
The sample is damaged signi  cantly in the plastic zone, 
where its properties are not really realistic.

Fig. 3—(a) A conceptual illustration of the representative elementary volume (REV) whose repetition creates (b) the shale bulk volume.

(a) (b)
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 Next, we turn to the determination of the plastic-zone size. 
The nanoindentation force in this study is 500 mN because 
results obtained with smaller force (< 100 mN) are usually 
in  uenced by the surface roughness (Miller et al., 2008). Our 
study on a variety of shale samples shows that the penetration 
depth is close to 3.5 m for this range of force. This leads to 
the plastic-zone size (= 2c) being close to 85 m (Eq. 4), as the 
semi-angle for an equivalent Berkovich indenter is 70.3°. The 
calculation is based on Poisson’s ratio being 0.25, Young’s 
modulus being 20 GPa, and the yield strength being 20 MPa 
(Wang et al., 2001; Zhu et al., 2009; Mavko et al., 2009; Gao 
et al., 2015).  Figure 4 shows the variation of the plastic-zone 
size with the Young’s modulus and yield strength when the 
Poisson’s ratio is equal to 0.25. The data provide an estimate 
for the lower limit for different shales.

Fig. 4—Variation of the plastic-zone size with Young’s modulus 
at different yield-strength values. Poisson’s ratio is equal to 0.25, 
and Young’s modulus and the yield-strength values are taken to be 
representative of shale formations (Sayers, 2013; Sone and Zoback, 
2013; Rybacki et al., 2015).

SAMPLE PREPARATION

 The nanoindenter tip that applies the load to the surface 
is much smaller than the core size. The small tip size and 
small penetration depth suggest that the rock surface has 
to be prepared to obtain reliable results. Otherwise, the 
interpreted results may characterize small fractures on the 
rock surface, which show lower resistance than the intact 
medium, or the surface roughness. 
 Sample preparation, in general, is easier for core samples 
that are common in rock mechanics because the actuator 
size is larger and less sensitive to local defects. This task 
may also be easier in other  elds, such as materials science 
and mechanical engineering, because they are focused on 
materials such as fused silica and aluminum that usually 
have fewer defects than do shales.
 Core samples were collected from the Wolfcamp 
Formation. Figure 5 shows the shale surface at different 
stages of preparation. The nanoindentation is envisaged as 
characterizing the bulk properties, as opposed to those of 
the local defects, when the rock surface is more polished. 
The sensitivity of the results to the surface preparation is 
discussed later in this paper. Achieving a high-quality 
surface that re  ects the light is not an easy task when dealing 
with cuttings. The small pieces have irregular shapes and 
sometimes break during polishing, especially when the 
sample is brittle. The surface roughness (often shortened 
to “roughness”) is quanti  ed in materials science and 
engineering, and there are even standards for it, such as ISO 
4287 (1997). The quantitative characterization of surface 
roughness is beyond the scope of this study.

Fig. 5—Shale surface with the discs used for preparation at different stages. The surface roughness decreases at higher stages and is more re  ective 
of light. A nanoindenter tip is placed on the rock surface in the  rst stage for the size comparison.
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 The  rst three stages of preparation (Stages 2 to 4 in Fig. 5) 
are grinding, and the last three (Stages 5 to 7) are polishing 
(Bhushan and Gupta, 1991). The process starts with a rough 
abrasive in grinding and uses a  ner abrasive at subsequent 
stages. The rough abrasive removes imperfections like pits, 
nicks, lines, and scratches, and the  ner abrasives leave 
progressively  ner lines that are not visible to the naked eye. 

RESULTS

 We determine the geomechanical properties of the shale 
formation at the core scale here. To do so, we  rst determine 
the sensitivity of the results to sample preparation. We then 
determine the cutting scale for different samples whose core 
plugs are available. Subsequently, this scale is used to obtain 
the pertinent properties at the core scale. The main focus will 
be on Young’s moduli, which are fundamental.

Sensitivity to Sample Preparation 
 Shale samples were collected from the Wolfcamp 
Formation to determine the sensitivity of the results to the 
preparation. The cross section is divided into equal areas 

Fig. 6—(a) The shale cross section is divided into equal areas and indented at the center. (b) Variation of the average Young’s modulus, which is 
obtained from nanoindentation, of the shale samples at each preparation stage.

(a) (b)

(Squares 1 to 16 in Fig. 6), and each square is indented at its 
center. The shale sample is first indented as received 
(Stage 1 in Fig. 5). It is then prepared for the subsequent stage 
and tested until the rock surface at all the stages is studied. 
The removed length of the shale sample perpendicular to the 
circular cross section is chosen to be larger than the plastic-
size zone to avoid interference between the tests.
 The average Young’s moduli of the shale samples at 
different conditions are investigated to better understand the 
effects of sample preparation. Figure 6 shows the results. 
It is apparent that the outcome is very sensitive to the  rst 
preparation step, which is grinding, as it removes small-scale 
features such as microcracks. Other preparation steps slightly 
alter the results. For instance, the average modulus in the  rst 
preparation increases 83% in Sample A, 52% in Sample B, 
and 64% in Sample C. The average modulus changes less 
than 10% during the last three stages for all the samples. 
 With the importance of the sample preparation in mind, 
we report and analyze the measurements after completing 
all the preparation stages. The  nished surface of a core plug 
reaches a higher level of smoothness than that of a cutting 
due to the high level of irregularity in the cutting.
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Determining the Cutting Scale
 We apply nanoindentation with regular spacings on the 
polished surface of a core plug to determine the cutting scale. 
Figure 7 shows the divisions and the spatial locations of the 
indentations at each step. Our objective in determining the 
cutting scale is to  nd the smallest size possible to be used in 
place of the core size (~1 in.). The smallest size allows us to 
use small cuttings, which are more easily accessible. 

Fig. 7—(a, b, c, d) Spatial locations of nanoindentations in four steps on a core plug (d = 25.4 mm, l = 17.6 mm) with regular spacing. The area is 
equally divided in each step, and the process stops when the distance between the nearest indentations is close to the plastic-zone size.

 Figure 8 shows the variation of the Young’s modulus 
with the indentation number. The nanoindentation allows us to 
investigate the shale surface regularly at different locations based 
on the pattern shown in Fig. 7. The penetration depth remains 
close to a few microns when the applied load is 500 mN. Thus, 
the regular spacings of the loads are crucial for characterizing the 
shale surface, and the outcome is related to the bulk properties, 
depending on the penetration depth of each sample.

(a)

(c)

(b)

(d)
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Fig. 8—The variation of Young’s modulus with indentation number for shale Samples (a) D, (b) E, (c) F, and (d) G. The spatial locations of the 
nanoindentations are shown in Fig. 7.

 Young’s modulus and hardness are the primary parameters 
available from nanoindentations (Eq. 1). Young’s modulus, 
which is of the main interest here, is used to determine the 
cutting scale. To evaluate the cutting scale, the average of the 
difference between Young’s moduli at each step and those 
of the four nearest indentations are determined. The process 
is conducted for different shale samples whose results are 
shown in Fig. 9. It is apparent that the average difference 
between the Young’s moduli is smaller than 6% when the 
regular spacing is equal to 2.2 mm. 
 The small difference associated with 8.8-mm spacing, 
which is close to 4% in Fig. 9, indicates that the moduli 
obtained with 17.6-mm spacings are close to those obtained 
with 8.8-mm spacings; thus, an 8.8-mm sample can replace 
a 17.6-mm sample. Following the same logic, a 4.4-mm 
sample can be used in place of an 8.8-mm sample, and a 
2.2-mm sample can be used in place of a 4.4-mm sample. 
Our conclusion is that the cutting scale can be set close to 
2.2 mm, and samples with this size or nanoindentations with 

this spacing can be used in place of core-scale measurements.
 It is desirable to de  ne the cutting scale as small as 
possible to be able to use small cuttings. This scale should 
be larger than the plastic-size zone, which is close to 0.1 mm 
when the applied load is equal to 500 mN, but it is unclear 
whether the cutting scale can be determined accurately. In 
our analysis, we halved the spacing between the indentations 
at each step, which is depicted in Fig. 7, but other division 
schemes can be tried, which are likely to yield other answers. 
 The cutting scale may vary in different formations and 
even for different samples from the same formation. In 
practice, it may not be possible to determine the cutting scale 
due to the lack of large samples. The existing limitations 
prevent us from accurately assigning the scale to all the shale 
samples. Thus, we consider a millimeter as an acceptable 
range for the cutting scale, and in the present study, we 
determined the accuracy of the results by comparing them 
with independent laboratory measurements.

(a)

(c)

(b)

(d)
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Fig. 9—(a) Young’s moduli of shale samples obtained from nanoindentations with regular spacings. (b) Difference between the Young’s modulus 
at each step and those of the four nearest at the subsequent step. The difference is presented with the spacing between the indentations, and the 
average value is smaller than 6% when the spacing is 2.2 mm.

(a) (b)

 Next, we tested the accuracy of the cutting scale in 
determining the geomechanical properties at the core 
scale. Core plugs were extracted from a shale formation in 
the US, and their properties were measured using triaxial 
tests prior to conducting nanoindentations. The core 
plug was broken under compression as it was loaded to 
characterize the yield strength. The small pieces obtained 
after compression were used in nanoindentations. It was 
not easy to accurately determine the bedding orientation 

in pieces, which is also true in practice when we deal 
with cuttings. 
 Figure 10 shows the small pieces. Figure 10a shows 
the pieces, which are used as a proxy for cuttings, prior 
to preparation, and Fig. 10b shows them when they are 
prepared. The sample size is also shown using a scale 
ruler in Fig. 10. The sample size varies but is consistent 
with the data reported for cutting size in the literature 
(Ortega and Aguilera, 2014).

Fig. 10—(a) Small pieces of the shales used to test the accuracy of the cutting scale. (b) Prepared samples are glued to an aluminum puck for 
nanoindentations.

(a) (b)
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 The nanoindenter was  rst calibrated using fused silica, 
with known properties, glued to the aluminum puck. The 
fused silica is used to account for the effects of the device 
stiffness, including the aluminum substrate on the acquired 
data. We did not embed the small pieces in resin, as other 
researchers did (Deirieh et al., 2012; Shukla et al., 2013), 
because it can form a substrate softer than the specimen. A 
substrate with lower resistance against the load can impact 
the accuracy of the results. We also ensured that the polished 
small pieces are well positioned and attached to the puck with 
minimal glue. Loads are applied perpendicular to the sample 
such that the sample remains between the nanoindenter tip 
and the aluminum puck. 
  Independent core-scale measurements were conducted on 
the core plugs, and the average of the Young’s moduli under 
different con  ning stresses (40.6, 50.6, and 30.5 MPa) is used 
to test the proposed method. We applied nanoindentations 
with regular 2.2-mm spacings to small pieces obtained from 
the core plugs. Figure 11 shows the results. The difference 

between the average modulus based on nanoindentations and 
the independent core-scale measurements remains smaller 
than 30% for all the samples. The difference becomes 
smaller when the  nished surface reaches a higher level of 
smoothness.
 It is dif  cult to reach a high level of smoothness for 
small pieces similar to that of a core plug shown in Fig. 5. 
The difference between the  nished surface is caused by 
the high level of irregularity in the initial state of cuttings. 
Polishing small pieces using the preparation stages discussed 
in this study is even more dif  cult when the shale sample is 
more brittle.
 The difference between the  nished surfaces is apparent 
in Fig. 12 and can also be seen to some extent by comparing 
the outcomes of different stages in Fig. 5. Nanoindentation, 
in general, is a high-precision measurement and is in  uenced 
by local  aws, such as small fractures. The local  aws 
reduce the sample resistance against deformation and lower 
the Young’s modulus obtained from nanoindentations.

Fig. 11—(a) Young’s moduli of the shale samples obtained from independent triaxial tests using core plugs and from nanoindentations using small 
pieces. (b) Error decreases for samples whose surfaces reach a higher level of smoothness after preparation.

(a)

(a)

(b)

(b)
Fig. 12—(a) The polished surface of the core plug, which corresponds to Stage 7 in Fig. 5, reaches a higher level of smoothness than that of (b) the 
cutting that corresponds to Fig. 9b. The interpreted results of the cuttings with the smoothest surface, which are less in  uenced by local  aws, are 
closer to the core-scale measurements.
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DISCUSSION

 The main objective of the conducted study was to propose a 
method applicable to shale cuttings. Predicting geomechanical 
properties at the core scale from nanoindentations will provide 
additional information that can be helpful in developing more 
realistic reservoir models. The shale surface was prepared 
using standard methods that are best designed for large 
samples. The presented results (Fig. 10) are based on using 
regular spacings, rather than  nding the smoothest area to 
make the process more systematic. The results were improved 
when the smoothest area was picked for indentation, in that 
the error was smaller. Our observation is that improving the 
sample preparation will reduce errors. Using ion-milling 
techniques, which are better suited to smaller samples, is 
expected to improve the results.
 Analyzing cuttings for formation characterization is 
appealing for a variety of reasons. Cuttings can help to better 
characterize the formation heterogeneity along the wellbore 
when only small pieces are available. Cuttings can also be 
obtained easily at minimal cost, in contrast to large samples, 
and can be used in close-to-real-time conditions. 
 There are limitations to the application of 
nanoindentations to cuttings and the sample preparation 
in our study. It is not always possible to determine the 
bedding orientation in the cuttings, and this becomes 
more complicated when the sample is smaller. Thus, 
one Young’s modulus was reported for each sample at 
the core scale, which may be interpreted as an effective 
isotropic response. The Young’s modulus based on 
nanoindentations was compared with independent core-
scale measurements. Determining anisotropic properties 
based on nanoindentations entails loading in different 
directions. It also requires more advanced preparation 
techniques to reach a high level of smoothness (Stage 4 or 
in Fig. 5) on the rock surface in different directions. 
  The proposed method in this study is concerned with 
predicting geomechanical properties using cuttings at the 
core scale. One of the main advantages of the cuttings is 
that they are abundant and more easily recovered than 
the core plugs. Thus, the accurate interpretation of the 
properties is signi  cant, especially if the collected cuttings 
on the surface can be related to the formation depth. The 
sample depth was not discussed in our study.
 The geomechanical properties at the core scale were 
predicted from nanoindentations applied in a systematic 
pattern in this study. The assumption was that the average 
modulus obtained from nanoindentations represents the 
sample behavior at the core scale when the average 

property does not change with decreasing distance. 
Hence, no upscaling was performed to determine the 
core-scale properties.

CONCLUSIONS

 The objective of the present study was to propose a new 
method that can be used for shale formation characterization 
using cuttings. The proposed method is required because 
large samples (~1 in.) are often unavailable. Cuttings are 
often the only source available and were used to determine 
geomechanical properties at the core scale.
 The Young’s moduli of the shale samples at the core 
scale were determined using nanoindentations on shale 
cuttings. The predicted results are promising, as the error 
in predicting core-scale measurements is smaller than 30% 
for all the samples analyzed. Our study shows that the 
rock surface smoothness has a major impact on the results 
obtained from nanoindentations. Surface grinding and then 
polishing were conducted. The two processes are important 
in order to remove local defects on the rock surface and 
to obtain properties more representative of bulk behavior. 
It was observed that surface grinding is more crucial, and 
polishing may be omitted when the applied load is close to 
500 mN. The average moduli, which were obtained from 
nanoindentations, increased more than 50% after grinding 
but changed less than 10% after polishing.
 Nanoindentation and its governing equations, as well as 
the necessary preparation for making nanoindentations, were 
discussed. As shown in the present study, nanoindentation is 
an appealing approach, as it can be applied to small samples. 
Nanoindentation is a high-precision measurement, and the 
outcome is sensitive to the sample preparation. Our study 
reveals that the predicted results from cuttings are closer 
to core-scale measurements when the sample is better 
prepared. Analyzing cuttings based on the conducted study 
has applications in the petroleum industry because it can 
enable us to better characterize the formation heterogeneity 
along the wellbore, especially in horizontal drilling, where 
large samples are usually not recovered.
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NOMENCLATURE 
Abbreviations

REV = representative elementary volume

a = 
Ac = 
c = 
E = 
Ei = 
Es = 
H = 
M = 

pmax = 
S = 

v = 
vi = 
vs = 

 = 
Es = 

vs = 
yield = 

 = 

projected-area radius
projected area
plastic-zone radius
Young’s modulus
indenter modulus
specimen modulus
specimen hardness
indentation modulus
maximum applied load
slope of load-displacement at the beginning
of unloading
Poisson’s ratio
indenter Poisson’s ratio
specimen Poisson’s ratio
shape factor
change in the interpreted Young’s modulus due
to the change in the Poisson’s ratio
change in the Poisson’s ratio
yield strength
geometrical parameter

Symbols
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  Classi  cation of Adsorption Isotherm Curves for Shale Based on Pore Structure

 Yuanyuan Tian1, Qing Chen1, Changhui Yan1,*, Hucheng Deng1, and Yanqing He1

      
ABSTRACT

 In the study of shale gas reservoirs, the characteristics of 
pore structure can be determined according to the shape of 
the adsorption isotherm curve. When applying conventional 
classi  cations known as the Brunauer-Deming-Deming-
Teller (BDDT), de Boer, and International Union of 
Pure and Applied Chemistry (IUPAC) classi  cation to 
categorize adsorption isotherm curves for shale, these 
classi  cations can’t accurately demonstrate pore structure 
in different shale reservoirs. Based on the characteristics 
of pore structure in shale, we chose pore shape, pore size, 

INTRODUCTION

 As energy structure has changed in the past decades, 
shale gas plays an important role in unconventional 
reservoir exploitation for many countries, such as China, 
the US, Canada, and Australia. (Ross and Bustin, 2008; 
Kalantari-Dahaghi, 2011; Torghabeh et al., 2014; Pang et 
al., 2017). With one of the largest technically recoverable 
shale gas storages in the world (US Energy Information 
Administration, 2015), China has been focused on shale 
gas exploration and development in recent years. The main 
exploitation projects have been carried out in the Sichuan 
Basin, Tarim Basin, and Yangtze Platform (Ross and Bustin, 
2009; Yan et al., 2009). 
 Shale is very different from conventional reservoirs. 
It is composed of two distinct components: organic and 
inorganic materials (Tian et al., 2017). Kerogen is the main 
constituent of the organic matter. There are a considerable 
amount of micropores (pore size < 2 nm) and mesopores 
(pore size between 2 to 50 nm) in organic matter (Kang et 
al., 2011). Inorganic materials in shale mainly consist of 
clay minerals (including illite, montmorillonite, chlorite, 
and kaolinite), quartz, and feldspar. The total amount of 
kaolinite, montmorillonite, illite, and chlorite can reach 70% 

and pore-throat sorting as parameters to study changes in 
adsorption isotherm curves due to different grades of these 
three parameters. We then generated 27 types of adsorption 
isotherm curves to match the corresponding characteristics 
of the pore structure in shale. This new classi  cation method 
is applied to categorize 101 adsorption isotherm curves 
measured by shale samples and analyzes the characteristics 
of pore structure. In a comparison of analysis results from 
other methods, this new classi  cation method is justi  ed to 
be more practical.
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for some shale samples, and clay minerals also can have 
nanoporous structures (Yaalon, 1962; Jiao et al., 2014). In 
a shale gas reservoir, a large amount of micropores results 
in ultralow permeability, which is a crucial parameter for 
shale gas prospection (Schwartz et al., 2019). Meanwhile, 
the presence of micropores increases speci  c surface area, 
and surface adsorption on large speci  c surface area can 
signi  cantly enhance gas in place in shale (Pang et al., 2018). 
As a result, pore structure analysis is signi  cant for shale gas 
exploitation and gas in place in shale (Jin and Firoozabadi, 
2016; Xu et al., 2020). 
 The pore structures of shale reservoirs have been studied 
by various experimental methods, such as scanning electron 
microscope (SEM), mercury intrusion, low-temperature 
nitrogen adsorption, and carbon dioxide adsorption (Dewers 
et al., 2012; Yang et al., 2013). Mercury intrusion is used 
to exploit macropores (pore size > 50 nm) (Bustin et al., 
2008), and it offers more information about throat rather 
than pores. (Clarkson et al., 2013). Low-temperature 
nitrogen adsorption and CO2 adsorption can be used to 
detect pore sizes of less than 50 nm (Clarkson et al., 2011). 
When applying gas adsorption to evaluate shale nanoporous 
structures, density functional theory (DFT), the Horvath-
Kawazoe (HK) model, the Barrett-Joyner-Halenda (BJH) 
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method, and the multipoint Brunauer, Emmett, Teller (BET) 
method are frequently used to calculate speci  c surface 
area or pore-size distribution (Ravikovitch et al., 1998; 
Dombrowski and Lastoskie, 2002; Li et al., 2016). Based 
on adsorption-desorption isotherms plotted by experimental 
data of low-temperature nitrogen adsorption P/P0 vs. V, 
where P is adsorption pressure in MPa, P0 is saturated vapor 
pressure in MPa, and V is the volume of adsorbate in pores in 
cc/g, different classi  cations of gas adsorption isotherms are 
also applied to characterize shale-pore structures, such as the 
Brunauer-Deming-Deming-Teller (BDDT) classi  cation, the 
de Boer classi  cation, and the International Union of Pure 
and Applied Chemistry (IUPAC) classi  cation (Anovitz and 
Cole, 2015; Zhang et al., 2016). 
 The BDDT classi  cation is based on the shape of 
adsorption isotherms (Brunauer et al., 1940). It can be inferred 
from this classi  cation that the adsorption mechanism is 
monolayer adsorption, multilayer adsorption, or capillary 
condensation. Furthermore, the pore-size distributions in 
adsorbents can be de  ned as micropore, mesopore, and 
macropore. The de Boer classi  cation considers both the 
shape of the adsorption isotherm and hysteresis loop (Everett 
and Stone, 1958). It is one of the most widely used methods 
to characterize the pore shapes of porous materials. There 
are  ve types of adsorption isotherms according to the de 
Boer classi  cation, and each type corresponds to a certain 
pore shape such as cylindrical, slit, conical, two nonparallel 
planes, and ink-bottle pores. The IUPAC classi  cation 
focuses on the shape of the hysteresis loop and de  nes two 
extreme types as H1 and H4, which indicate pores forming 
uniform spheres in fairly regular arrays and narrow slit pores 
separately, and two intermediate types between these two 
types (Gregg and Sing, 1983).
 It is worth mentioning that all previous adsorption 
isotherm classi  cations are based on the characteristics of 
homogeneous adsorbents, which are particularly different 
from shale. None of these classi  cations can investigate a 
shale’s pore structure comprehensively because researchers 
usually focus on a single factor like pore shape or pore size. 
In addition, while using adsorption isotherm classi  cations, 
pore sorting is ignored. To the best of our knowledge, there 
is no work to combine a shale’s pore structure and shape of 
the adsorption isotherm. Our research aims at proposing a fast 
and accurate method to study a shale’s pore structure as pore 
shape, pore size, and pore-throat sorting based on establishing 
a new adsorption isotherm classi  cation for shale. 

TEST SAMPLES AND EXPERIMENTS

 All 106 core samples (Samples D1 to D106) are black 
and dark gray shale rocks from the Wulalik Formation, 
Pingliang Formation (Ordovician), black shale from the 
Yanchang Formation (Triassic) in the Ordos Basin, and black 
gray and dark gray shale rocks from the Niutitang Formation 
in the Sichuan Basin.
 The tests are conducted by the Quadrasorb SI surface 
area and pore-size analyzer. In our experiment, nitrogen is 
used as the adsorbate. The lower limitation of the speci  c 
surface area is 0.01 m2/g for nitrogen. In the aspect of pore-
size distribution analysis, the minimum pore volume is 
0.0001 cm3/g (at standard temperature and pressure), and the 
pore-size range is 0.35 to 400 nm. 
 All samples were crushed to 60 to 80 mesh (180 to 
250 m). The pulverized samples were dried and vacuumized 
at 353.15 K for 12 hours for degassing in order to prepare the 
samples for the gas adsoption method. In the gas expansion 
process, the crushed samples were added in low-temperature-
resistant test tubes of the experimental instrument, and N2 
adsorption-desorption isotherms were obtained under the 
relative pressure ranging from 0.01 to 0.995 at 77 K. The 
adsorption isotherm is derived point by point by measuring the 
quantity of nitrogen adsorbed and the equilibrium pressure as 
pressure increasing. On the contrary, the desorption isotherm 
can be obtained by measuring the quantities of gas removed 
from the sample as the relative pressure decreasing. With the 
QuadraWin software, the adsorption-desorption isotherm 
curves are generated automatically.

CONVENTIONAL CLASSIFICATION IN 
APPLICATION TO SHALE

 Many studies on the classi  cation of adsorption isotherm 
curves have been done. Classi  cations based on the shape of 
adsorption curves include the BDDT classi  cation and the 
modi  ed BDDT classi  cation done by Sing et al. (1985); 
classi  cations based on the adsorption curve coupled 
with the shape of the hysteresis loop include the de Boer 
classi  cation and the IUPAC classi  cation.
 The BDDT classi  cation focuses on the van der Waals 
adsorption of gases and divides adsorption isotherms into  ve 
types (Brunauer et al., 1940) (Fig. 1). Type I isotherms are 
given by microporous solids having relatively small external 
surfaces. Type II is the S-shaped or sigmoid isotherm and is 
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the normal form of isotherm obtained with a nonporous or 
macroporous adsorbent. A Type III isotherm is convex to the 
P/P0 axis over its entire range, and this type is a well-known 
BET adsorption isotherm. Type IV and Type V are closely 
related to Types II and III. Characteristic features of Type 

Fig. 1—Classi  cation of the BDDT adsorption isotherm (Brunauer, 1940; Gregg and Sing, 1982). The dashed line in (d) Type IV and (e) Type V refers 
to an adsorption isotherm of porous media with a relatively small external surface, and the solid line refers to the adsorption isotherm of porous media 
with a relatively large external surface.

IV and Type V isotherms are their hysteresis loop, which is 
associated with capillary condensation compared with Type 
II and Type III (Sing et al., 1985). Adsorption isotherms for 
shale belong to Type IV and Type V (Fig. 2). 

Fig. 2—Typical adsorption isotherms of Type IV and Type V according to the BDDT classi  cation. (a) Type IV  adsorption isotherms; (b) Type V 
adsorption isotherms.
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 de Boer and Lippens divided adsorption/desorption 
isotherms with hysteresis loops into  ve types (de Boer 
and Lippens, 1964; Tang et al., 2015) (Fig. 3). The shape 
of the hysteresis loop corresponds to the pore shape. Type A 
is speci  c for cylindrical pores with a similar radius. Type 
B is speci  c for pores formed between two planes. Type C 
adsorption/desorption isotherm is formed in conical pores. 
Type D hysteresis loop is corresponding to the shape of pores 
formed from two nonparallel planes. Type E has a spherical 
shape of pores, with numerous narrowings and open ends, 
along with different forms of “ink bottle” (Nagolska and 
Gawdzi ska, 2011). All shale samples can be divided into 
three groups based on the de Boer classi  cation as Type B, 
Type D, and Type E (Fig. 4).
 The IUPAC classi  cation was identi  ed based on 

Fig. 3—Classi  cation of de Boer adsorption/desorption isotherms (de Boer et al., 1964). (a) Type A; (b) Type B; (c) Type C; (d) Type D; and (e) Type 
E. The lower line is the adsorption curve, and the upper line is the desorption curve.

experimental isotherms observed in disordered solids (Gregg 
and Sing, 1982; Sing et al., 1985; Fan et al., 2013) (Fig. 5). 
Type H1 and Type H4 are two extreme types. In Type H1, 
the two branches are almost vertical and nearly parallel over 
an appreciable range of gas uptake. It indicates a limited 
pore-size distribution of the measured samples. Type H4 
remains nearly horizontal and parallel over a wide range 
of P/P0. Types H2 and H3 may be regarded as intermediate 
between these two extremes. Type H2 usually happens to 
slit-like pores. The samples have   various distributions of 
pore types and pore size. Type H3 usually occurs with open-
wedge pores (Zhang et al., 2016). According to the IUPAC 
classi  cation, the adsorption/desorption isotherms of the 
shale samples show features of Type H2, Type H3, and Type 
H4 (Fig. 6). 

  Classi  cation of Adsorption Isotherm Curves for Shale Based on Pore Structure
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Fig. 4—Typical adsorption isotherms of Type B, Type D, and Type E according to the de Boer classi  cation. (a) Type B adsorption isotherm; (b) Type 
D adsorption isotherm; and (c) Type E adsorption isotherm.

Fig. 5—Classi  cation of the IUPAC adsorption/desorption isotherms (Sing et al., 1985). (a) Type H1; (b) Type H2; (c) Type H3; and (d) Type H4.

Tian et al.
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Fig. 6—Typical adsorption isotherms of Type B, Type D, and Type E according to the de Boer classi  cation. (a) Type H2 adsorption isotherm; (b) Type 
H3 adsorption isotherm; and (c) Type H4 adsorption isotherm.

 These three classi  cations reveal the characterizations 
of all shale samples we measured (Durán-Valle, 2012; Zhang 
et al., 2016). Of the samples, 60.38% have micropores and 
mesopores, and the rest are samples with mesopores and 
macropores based on the BDDT classi  cation. The results 
based on the de Boer classi  cation depict the pore shape of 
shale samples as slit pores formed by two parallel plates or 
nonparallel planes except for six spherical-pore samples. 
When the IUPAC classi  cation is applied, it shows that 
most shale samples we measured are slit-pore shale or open-
wedge pore shale, and only 8% of the samples are bottleneck 
pore (Table 1).
 However, the BDDT classi  cation does not take 
the hysteresis into consideration. Thus, some important 
information re  ecting the pore structure of the shale 
is neglected when using the BDDT classi  cation. In 
addition, the adsorption isotherm curves for all shale core 
samples only occupy two types in the BDDT classi  cation, 
which can’t demonstrate the diversity of shale samples. It 

Table 1—Classi  cation of Adsorption Isotherm for Shale Samples by Conventional Classi  cations

illustrates that the main types of pores in shale are narrow-
slit pores and tilt-plate crossbedding pores when applying 
the de Boer classi  cation to analyze adsorption isotherm 
curves for 106 shale samples. Therefore, the result of the de 
Boer classi  cation is monotonous. The IUPAC classi  cation 
indicates that these shale samples contain a large amount 
of ink-bottle pores, narrow-slit pores, and a small amount 
of slit pores. From the quantity of types obtained by the 
IUPAC classi  cation, it is better than the de Boer and BDDT 
classi  cations. However, due to the diversity of the shale’s 
pore structure, none of these methods can evaluate the 
characteristics of the pore structure in shale completely.
 Shale adsorption capacity is dependent on the type 
and quantity of minerals, type and amount of organic 
matter, and characteristics of the pore structure. This 
feature leads to the diversity and specialty of adsorption 
isotherm curves in shale. Therefore, a new classi  cation 
method focusing on the classi  cation of shale adsorption 
isotherm curves is necessary.

  Classi  cation of Adsorption Isotherm Curves for Shale Based on Pore Structure
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GENERATING A NEW CLASSIFICATION FOR 
SHALE ADSORPTION ISOTHERM CURVES 

 A shale adsorption isotherm curve is a representation of 
a characteristic of the pore structure in a shale reservoir. As 
an unconventional reservoir, the shape and size of the pores 
and sorting of pore throat for shale have direct effects on 
reserves calculation, productivity analysis, and production 
performance. Therefore, the effects on adsorption isotherm 
and hysteresis by these three parameters should be taken into 
account to discuss the new classi  cation for shale adsorption 
isotherm curves.

The Effect of Pore Shape on Adsorption Isotherm Curves
 Shale contains a lot of clay, quartz, feldspar, and rock 
debris. The content and arrangement of these fragments 
are different, which result in a variety of pore shapes in 
shale. The pore shape of shale is not only a considerable 
factor in shale gas adsorption but also a probable reason 
for permeability variation in shale (Zheng et al., 2019a; 
Zheng et al., 2019b). According to SEM  gures, slit-pore, 

Fig. 7—Main pore types in shale and the effect of pore shape to adsorption isotherm curves. (a) SEM images; (b) pore shape; and (c) adsorption-
desorption curves. Curves in (c) are adsorption-desorption curves of slit-shaped pore, wedge-shaped pore, and cylinder-shaped pore, respectively.

wedge-shaped, and cylindrical pores are three common pore 
structures in shale (Fig. 7a). In the de Boer classi  cation (de 
Boer et al., 1958), pore shape affects the adsorption isotherm 
curve and shape of the hysteresis loop. For slit-shaped pores, 
the hysteresis loop is wide, and its  axis is parallel to the 
x-axis. The adsorption curve drastically increases nearly at 
saturated vapor pressure, but the desorption curve rapidly 
decreases at medium relative pressure, which results in a 
 at hysteresis loop with the smallest vertical spacing. For a 

wedge-shaped pore, the hysteresis loop is relatively planar 
with a spacing between the spacing of a cylindrical pore 
and the spacing of a slit pore. For a cylindrical-shaped pore, 
hysteresis appears in the medium relative pressure region. 
The vertical intervals of the adsorption curve and desorption 
curve are barely parallel, and the hysteresis has the largest 
vertical spacing (Fig. 7b). When the pore structure changes 
from cylindrical to wedge and then to slit, adsorption and 
desorption curves change from parallel to the vertical axis 
and then to the horizontal axis (Fig. 7c). The hysteresis loop 
is from steep with large vertical spacing to  at with large 
horizontal spacing.

Tian et al.
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Effect of Pore Size on Adsorption Isotherm Curves 
 Shale contains micropores, mesopores, and macropores, 
and pore size is one of the most important factors in 
shale gas  ow (Shen et al., 2018) (Al   et al., 2019). The 
distribution of adsorption potential in pores with different 
pore sizes is not uniform, resulting in a discrepancy in the 
shape of the adsorption isotherm curve. Both simulation 
and experimental projects reveal that pore size affects the 
shape of the adsorption isotherm curve and hysteresis loop 
signi  cantly (Neimark et al., 1998; Sayari et al., 1998; Kruk 
et al., 2000; Ravikovitch and Neimark, 2001) (Fig. 8). The 
hysteresis is dependent on the pore size; the starting point 
of hysteresis (SPH) will move forward to the low-pressure 
region, and the area of hysteresis will gradually decrease 
until it totally disappears. It is in accordance with the results 
derived from the experimental analysis of the shale samples. 
The comparison of Samples D2, D90, and D28 obviously 
shows that Sample D2 has the widest hysteresis loop, and 
the starting pressure of the hysteresis loop is lower than 
Samples D90 and D28. On the contrary, the hysteresis loop 
of Sample D28 is narrower and starts at higher pressure (Fig. 
9). The rank of pore sizes of these three samples is d (D28) > 
d (D90) > d (D2) (Fig. 10). Therefore, for shale, the area and 
horizontal spacing of  the hysteresis loop is small for shale 
with micropores. The relative pressure at the starting point 
of hysteresis is relatively low (about P/P0 < 0.4); for shale 
with macropores, the area of the hysteresis loop is large, and 
the relative pressure at the starting point of hysteresis is high 
(about P/P0 > 0.6); for shale with mesopores, the area of the 
hysteresis loop and relative pressure at the starting point of 
the hysteresis are medium (P/P0 is around 0.5), which is 
located between the value of micropores and macropores 
(Fig. 11). 

Fig. 8—Comparison of the adsorption isotherms on MCM-41 with 
different pore sizes (Ravikovitch et al., 2001).

Fig. 9—Adsorption isotherms of shale samples.

Fig. 10—Pore-size distribution of shale samples.

Fig. 11—Effect of pore size to adsorption isotherm curve in shale.

Effect of Pore-Throat Sorting on Adsorption Isotherm 
Curves 
 The sorting of pore throat is a crucial parameter for the 
evaluation of reservoir properties. The hysteresis is very 
complicated in ink-bottle pores due to pore blockage (Fig. 12a) 
(Thommes, 2010). When the bottleneck is smaller than 
the body, the blockage might happen during desorption. 
The bottle may be blocked because the neck is  lled by 
absorbates. When pressure drops to capillary evaporation 
pressure at the neck of the bottle, the gas will rapidly desorb 
and  ow out. Thus, the homogeneity of the ink bottleneck 
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affects the shape of the desorption curve in the hysteresis 
loop (Fig. 12b). When the size of the ink bottleneck is almost 
equivalent, the desorption curve decreases rapidly. However, 
the size of the ink bottleneck is different, and the desorption 
curve decreases slowly. 

Fig. 12—Effect of pore-throat sorting to the adsorption isotherm curve 
in shale. (a) Adsorption-desorption curves of ink-bottle pore with various 
pore size or throat size. (b) Adsorption-desorption curves of pores with 
different pore sorting.

 The pore shape in shale reservoirs is similar to the ink-
bottle model. The body of the ink-bottle pore corresponds 
to the pore in shale, and the ink bottleneck is equivalent to 
the pore throat. Therefore, the sorting of pore throat affects 
the shape of the desorption curve in the hysteresis loop of 

the shale. For poor-sorting shale rocks, as shown in Fig. 12, 
the desorption curve gradually decreases. There is no sudden 
pressure change; for medium-sorting shale, the desorption 
curve has a sudden pressure drop, but the desorption curve 
falls in a certain range; for good-sorting shale rocks, the 
desorption curve has a sudden pressure drop and declines at 
a rapid speed. 

New Classi  cation of Adsorption Isotherm Curves 
 Figures 7, 11, and 12 show the effect of pore shape, size, 
and throat sorting to adsorption isotherm curves of shale, 
respectively. However, adsorption in shale is dependent on 
these three parameters simultaneously. Due to sedimentation, 
diagenesis, and catagenesis, shale samples reveal a variety 
of diversity. According to the three parameters mentioned 
above, 27 types of curves are concluded. Various types of 
curves re  ect different pore shapes, size, and throat sorting, 
as shown in Fig. 13. The pore size of slit pore is measured 
by the distance between two parallel plates. Pore size for 
a wedge-shaped pore or cylindrical-shaped pore is de  ned 
as a pore radius of pore sections. In order to demonstrate 
the pore structure for different shapes of curves, 27 types of 
curves are categorized into three templates. Each template 
contains a certain pore shape corresponding to the adsorption 
isotherm curve for different pore sizes and throat sorting. 
In the template, the sorting of the pore throat is from poor 
to good along the x-axis from left to right, which illustrates 
that the desorption curve in the hysteresis loop changes 
from  at to steep. Pore size is from big to small along the 
y-axis from bottom to top, which re  ects that pressure at the 
starting point of hysteresis gradually increases, and the area 
of hysteresis keeps increasing.

Fig. 13—A template of adsorption isotherm classi  cation curves for (a) cylinder-shaped pores, (b) wedge-shaped pores, and (c) slit-shaped pores. 
(From left to right in the diagram) Adsorption curves indicate the pore structure changes from poor sorting to good sorting, and (from bottom to the top 
of the diagram) adsorption curves show pore size increases gradually.

Tian et al.
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 As we plotted adsorption-desorption curves of shale, the 
pro  le of the hysteresis loop, the starting point of hysteresis, 
indicated capillary condensation in pores and a downtrend 
of the desorption curve are all explicit. In the work  ow in 
Fig. 14, the shape of pores is determined by the relationship 
of the axis of the hysteresis loop and x-axis (or y-axis). The 
area of the hysteresis loop and the pressure of the SPH are 
evidence of pore-size estimation. For pore-throat sorting, it’s 
directly con  rmed by the form of the desorption curve.

Fig. 14—Work  ow of pore structure evaluation by classi  cation of 
adsorption isotherm curves.

APPLICATION OF NEW CLASSIFICATION OF 
ADSORPTION ISOTHERM CURVES 

 We applied the new classi  cation of adsorption isotherm 
curves to the adsorption isotherm curves of 106 shale samples. 
Eight curves belong to Type W4; the pore structures of these 
shale samples are poor sorting, medium-pore size, and 
wedge shaped. Twenty curves belong to Type W5; medium 
sorting,   medium-pore size, and wedge shaped are the pore 
properties of these shale samples. Twenty-four curves belong 
to Type W6; these shale samples are medium sorting and are 
medium size with a wedge shape. Sixteen curves belong to 
Type W8; these shale samples have mainly wedge-shaped 
pores, micropores, and are poorly sorted. Eleven curves 
belong to Type W9; pores of these shale samples are mainly 
wedge-shaped micropores and poor sorting. The remaining 
samples are all slit-shaped pores. Among them, 15 samples 
are poor sorting and mesopore shale (Type S4);  ve samples 
are medium sorting and mesopore shale (Type S5); four 
samples are good sorting and mesopore shale (Type S6); 
three samples are medium sorting and micropore shale (Type 
S8) (Fig. 15). The adsorption isotherm curves for all samples 
are categorized, as shown in Table 2. The new classi  cation 
characterizes the shapes of adsorption isotherm curves of all 
the shale samples and generates multiple categories of curve 
templates, which re  ect the diversity of different adsorption 
isotherm curves, as shown in Fig. 13.

DISCUSSION

 According to the results of the new classi  cation of 
adsorption isotherm curves for 106 core samples, the pore 
shapes of Samples D7 and D78 are wedge shaped and slit 
shaped, respectively. To verify research results about pore 
shape, a scanning electron microscope experiment was 
performed. Figure 16a is an SEM image magni  ed 10,000 
times for Sample D7. From the SEM image, the pores in 
Sample D7 are mainly wedge-shaped pores. The voids 
between fragments of minerals and matrix provide the main 
pore volume. Figure 16b is an SEM image magni  ed 20,000 
times for Sample D78. Though wedge-shaped pores exist 
in this sample, the majority of pores are slit shaped. These 
pores are very regular pores with parallelly aligned clays on 
both sides. Based on the SEM images, the new classi  cation 
of adsorption isotherm curves agrees well with the pore-
shape categorization.

  Classi  cation of Adsorption Isotherm Curves for Shale Based on Pore Structure
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 According to the results of the classi  cation, Samples 
D15 and D39 are micropore samples, and Samples D46 
and D81 are mesopore samples. Based on the adsorption 
isotherm data for the samples, we applied the BJH method 
to obtain the pore-size distribution for these four samples, 
as revealed in Fig. 17, and then the average diameter for 
each sample shown in Table 3. The peaks of the pore size 
of Samples D15 and D39 are less than 2 nm, and both 
average pore sizes are less than 2 nm. Thus, Samples D15 
and D39 are microporous samples based on the pore-size 
classi  cation. However, the peaks of the pore sizes and 
average pore sizes for Samples D46 and D81 are larger 
than 2 nm but less than 50 nm. Thereby, they belong to 
mesoporous samples. The pore-size distributions from 
the BJH method for these four samples agree well with 
the new classi  cation. 
 From the classi  cation results, Samples D89 and 
D5 are poor sorting, Samples D11 and D7 are medium 
sorting, and Samples D65 and D9 are good sorting. The 
histogram of the pore size of these six core samples 
can be obtained from the pore-size distribution, as 
shown in Fig. 18. For Sample D89, multiple peaks are 
observed. Therefore, Sample D89 is poor sorting. The 
peak in Sample D5 is not obvious, and most ratios of 
corresponding pore volume to total pore volume are 

around 10%. Therefore, Sample D5 is poor sorting. The 
peaks of Samples D11 and D7 are obvious. The ratio of 
corresponding pore volume to total pore volume for both 
samples is around 15 to 25%. The frequency on the right-
hand side of the peak rapidly decreases. Thus, these two 
samples belong to medium sorting. The peaks of Samples 
D65 and D9 are outstanding. The ratio of corresponding 
pore volume to total pore volume for both samples is 
more than 50%. The frequency on the right-hand side 
of the peak drastically declines and approaches to zero, 
which shows that Samples D65 and D9 are good-sorting 
samples. The results of the new classi  cation agree well 
with the results from the histogram of the pore size. 
 By applying the new classification method 
to categorize the adsorption isotherm curve, the 
characteristics of pore structure (shape, size, and 
throat sorting) for shale samples can be preliminarily 
determined. Estimating reservoir properties based on 
the characteristics of the pore structure makes a more 
effective reorganization to shale reservoirs. Meanwhile, 
a new theoretical basis can be provided when it is 
applied to calculate reserves of shale. Furthermore, a 
more reasonable development can be chosen to exploit 
shale gas, which can save the cost due to inappropriate 
treatment and stimulate the production of shale gas.

Tian et al.

Table 2—Classi  cation and Pore-Structure Characteristics of Shale Adsorption Isotherm Curves From Ordos Basin and Sichuan Basin
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Fig. 15—Typical adsorption isotherms of shale samples according to the new classi  cation: (a) Type W4; (b) Type W5; (c) Type W6; (d) Type W8; (e) 
Type W9; (f) Type S4; (g) Type S5; and (h) Type S8.
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Fig. 16—SEM images of typical shale samples. (a) SEM image magni  ed 10,000 times for Sample D7. (b) SEM image magni  ed 20,000 times for 
Sample D78.

Fig. 17—Diagram of pore-diameter distribution of typical shale samples. 

Table 3—Average Pore Size of Shale Samples

Tian et al.
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Fig. 18—Histogram of pore diameters of typical shale samples.

CONCLUSIONS

By applying three conventional classi  cations of 
adsorption isotherm curves to categorize the shale 
adsorption isotherm curve, we found that the results 
of three classi  cations are monotonous, which cannot 
accurately conclude types of adsorption isotherm 
curves. Therefore, they can’t properly evaluate 
characteristics of pore structure. 
Pore shape, size, and throat sorting have effects on 
the shale adsorption isotherm curve. Pore shape is 
relevant to the shape of adsorption and desorption 
curves. As for shape changes from slit to wedge 
shaped and then to cylindrical, the adsorption-

desorption curve changes from  at to steep; pore 
size affects the horizontal location and area of the 
hysteresis loop. With size changing from small to 
large, the hysteresis loop would move forward to 
the right-hand side, and the area of hysteresis would 
increase; pore-throat sorting impacts the shape of 
desorption. From poor to good sorting, the desorption 
curve in hysteresis changes from  at to steep.
According to the pore shape, size, and throat 
sorting in shale, adsorption isotherm curves are 
categorized into 27 types. The generated adsorption 
isotherm curve classi  cation fully considers the 
characteristics of pore structure in shale. It has a 
detailed classi  cation with obvious features for each 
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type of curve, which satis  es the requirement of 
classi  cation of adsorption isotherm curves in shale.
This new classi  cation method is applied to 
categorize 106 adsorption isotherm curves measured 
by core samples from the Sichuan Basin and Ordos 
Basin, which re  ects the diversity of pore structure 
for different core samples. Moreover, the accuracy 
of the results obtained by the new classi  cation of 
adsorption isotherm curves is justi  ed based on SEM 
images, pore-size distribution, and histogram.
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Automatic Detection of Anomalous Density Measurements due to  Wellbore Cave-in

Deepthi Sen1*, Cen Ong2, Sribharath Kainkaryam2, and Arvind Sharma2

      
ABSTRACT

 We present a work  ow for automatic detection and 
 agging of faulty formation density log measurements 

associated with wellbore cave-in (“bad holes”). We 
use an unsupervised time-series clustering algorithm to 
simultaneously cluster caliper and density logs, resulting 
in a labeled data set. Subsequently, we train a number 
of supervised learning algorithms on the labeled data 
set to detect bad holes when caliper measurements are 
unavailable. The work  ow is shown to offer superior 

INTRODUCTION

 High-quality well-log data are essential for reservoir 
characterization. Petrophysical evaluation of well-log 
measurements provides important properties, such as 
lithology, porosity, and permeability (Mukerji et al., 2001; 
Sarasty and Stewart, 2003), which are crucial components for 
the determination of production potential of a hydrocarbon 
reservoir. Petrophysical interpretation of well-log data also 
provides a framework for the interpretation of seismic 
properties, such as P- and S-wave velocities (Gupta et al., 
2012; Gray et al., 2015).
 Openhole measurement of formation bulk density 
( B) is one of the most commonly recorded well logs in 
any basin. Formation density tools record B by means of 
induced radiation wherein gamma rays are emitted into the 
formation through an open hole. The rays lose a fraction of 
its energy due to scattering by electrons (in the formation 
and mudcake) along its path, and the degree of attenuation is 
proportional to B. The detectors in the density tool measure 
the energy of the returning radiation, from which B may be 
estimated (Pickell and Heacock, 1960).
 Even though formation density logs are most 
commonly used to compute the total porosity of the 
formation, they may also be used in tandem with other 
logs for lithology identification and to test for the presence 
of gas in the formation. However, B measurements 
are prone to error arising from a number of factors, 
such as the borehole quality and presence of barites in 

performance to conventional bad-hole detection methods, 
such as rugosity calculation, while requiring minimal 
user intervention. The work  ow has been applied to a set 
of 3,762 Permian wells in order to tag and delete density 
values recorded at wellbore cave-ins. A density prediction 
model trained on the deleted data set is used to repredict 
the densities at the cave-in sections. This is shown to 
reduce erratic oscillations in density brought about by 
wellbore cave-in.

drilling mud (Glover, 2013). Ensuring borehole quality 
is particularly important since a density log is a short-
range tool, and it is imperative that the sonde maintains 
contact with the wellbore at all times. These issues may be 
partly overcome by applying dual-density compensation 
using a compensated density log, which corrects the 
measurement using long-spaced and short-spaced readings 
(Glover, 2013). However, long-spaced and short-spaced 
measurements lose their meaning in a caved-in or uneven 
borehole (Gavriliu and Batchelor, 2019).
 Therefore, the identi  cation of bad-hole readings 
in formation bulk density logs is crucial to subsequent 
petrophysical analyses that rely on B readings (Ugborugbo 
and Rao, 2009; Wen et al., 2011). There are different methods 
for classifying bad recordings. Kumar et al. (2018) use B 
vs. neutron porosity ( N) and B vs. sonic traveltime ( T) 
crossplots to determine erroneous density data.
 Formation density logs are primarily run alongside 
caliper ( ) logs in order to isolate bad recordings of B that 
arise due to wellbore cave-ins. This is because wellbore 
cave-ins are often accompanied by increased or highly 
oscillatory readings of the caliper log, and this signature may 
be used to detect bad holes (Bassiouni, 2012). Even though 
rugosity ( ) is a qualitative measure of wellbore smoothness, 
petrophysicists conventionally express it as a function of 
depth (z):** 

(1)
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 A cutoff is then applied on rugosity, and those sections 
of the density log corresponding to higher rugosity are 
deleted. A rugosity value of 0.075 is typically used as cutoff. 
A shortcoming of such an approach is apparent in Fig. 1, 
where the rugosity curve does not result in the removal of an 
entire section of bad readings without manual intervention. 
The rugosity curve, which is computed based on the  rst 
and second derivative of a noisy curve, is inherently noisy. 
The application of an amplitude cutoff on such a curve is 
insuf  cient in removing all the measurements recorded 
in a bad-hole interval, as seen in Fig. 1. de Macedo et al. 
(2020) made use of Doll’s geometric factor (Doll, 1949) 
to account for density corrections due to wellbore cave-ins 
by expressing the measured density as a weighted sum of 
formation and mud densities. The authors assume a linear 
relationship between the minimum and maximum values of 
caliper readings and the geometric factor, which subsequently 
yields the slope and intercept used in formulating the 
density correction. Gavriliu and Batchelor (2019) describe 
yet another approach to account for the effects of rugosity 
in density measurements, which is to model the space 

Fig. 1—Bad-hole classi  cation with rugosity cutoff may lead to frequent 
oscillations in the predicted cluster sequence (highlighted). The 
measured caliper and density are given in (a). The rugosity calculated 
using Eq. 1 and the rugosity cutoff of 0.075 have been plotted in (b). 
The predicted cluster sequence based on the rugosity cutoff has been 
shown in (c), with Cluster 1 representing bad-hole conditions.

investigated by the tool and derive an appropriate density 
correction. Liu and Zhao (2015) apply a similar method 
based on geometric factors to coalbed methane reservoirs 
to deduce an appropriate density correction. However, the 
derived density corrections in all of the above works are 
highly empirical since the authors impose assumptions on 
aspects, such as the caliper-geometric factor relationship and 
borehole shape, which may not hold in all cases.
 Johnston and Guichard (2015) analyzed scatterplots of 
drilling parameters, such as weight on bit (WOB) against 
torque and rate of penetration, to identify bad-hole sections 
in wellbores drilled in the UK continental shelf. Jain et 
al. (2019) used a cascaded scheme of machine-learning 
algorithms—cross-entropy clustering, Gaussian mixture 
model, and hidden Markov model—to simultaneously 
classify multiple well logs into a sequence of clusters. This 
scheme was subsequently used for automatic quality control 
of recorded logs.
 Clustering of time-series data is an area of active 
research within the pattern recognition community. A 
popular approach to time-series clustering involves  tting 
a model (or a mixture of models) to raw time-series data 
considering that each time series is generated by this model 
(Liao, 2005). A signi  cant portion of the literature on model-
based time-series clustering relies on hidden Markov models 
(HMM), augmented by some form of initialization—k-
means (Smyth, 1997) and dynamic time warping (Oates et 
al., 1999). These approaches  t an HMM to each cluster 
in the data set by iteratively estimating the transition and 
emission probabilities via an expectation-maximization 
algorithm (such as Baum-Welch or segmental k-means) 
and subsequently computing the most likely state sequence 
(via Viterbi algorithm) (Rabiner, 1989; Sen et al., 2014). 
One of the main disadvantages of these approaches is that 
the number of HMM states are left to the user to decide. 
Hallac et al. (2017) present a novel graph-based algorithm 
for time-series clustering, which yields highly interpretable 
cluster sequences and is less prone to over  tting than 
earlier methods. This approach, called Toeplitz Inverse 
Covariance-based Clustering (TICC), formulates the model-
 tting procedure in a way such that closed-form solutions 

are available for the optimization problem. This makes the 
algorithm suitable for clustering very long time series since 
the computational expense scales only linearly with the 
length of the series (Hallac et al., 2017).

METHODOLOGY

 Our work  ow incorporates aspects of both 
unsupervised and supervised learning. We propose to use 

(a) (b) (c)
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the TICC algorithm to cluster well logs in a data set of a well 
containing both caliper and B measurements (Data Set 1). 
The algorithm generates labels that correspond to good/bad 
clusters. Once the labeled data set is generated, a supervised 
learning method may be used to map a number of features, 
such as density logs, location coordinates, and depth, to a 
particular label. This trained model can then be applied to 
a bigger data set that does not necessarily contain caliper 
measurements (Data Set 2) to cluster these as good/bad. The 
general work  ow is illustrated in Fig. 2.

Fig. 2—Proposed work  ow consists of unsupervised labeling of well 
logs using recorded B and  in a data set where these readings are 
available (Data Set 1). The labeled data set (Data Set 1L) thus created 
may be used to train a supervised learning model that classi  es bad 
holes in a data set where  is not available (Data Set 2).

 The  rst phase consists of automatically creating labels 
on well logs for which B and  are available. To this end, 
we use an unsupervised learning technique called Toeplitz 
Inverse Covariance-based Clustering (TICC) (Hallac et al., 
2017). TICC essentially clusters a multivariate time series 
by identifying distinct time signatures in the time series. 
The algorithm consists of building a graphical model of 
dependencies between variables, which are expressed in 
the form of a Markov Random Field (MRF). A detailed 
description of the TICC algorithm is provided in a subsequent 
section, “Phase 1: Unsupervised Learning.”
 The second phase of our work  ow involves training 
a supervised machine-learning model using the labels 
generated by the TICC. This is a supervised binary 
classi  cation problem, where the selected input features 
include B, z, latitude ( LAT ), longitude ( LON), and gamma ray 
(GR) logs. Since our primary objective is to  ag bad-density 
readings, B is an obvious choice for an input feature vector. 

The location-based features z, LAT, and LON are chosen to 
provide spatial context to the model. GR logs provide a 
mapping between the lithology (shale vs. nonshale) and 
the presence or absence of wellbore cave-ins. Additionally, 
GR is highly ubiquitous and is available in almost all wells 
in the Permian Basin, where we base our study. We test 
six models, namely, linear discriminant analysis (LDA), 
logistic regression, random forest, extreme gradient boost 
(XGBoost), gradient boosting classi  er (GBC), and recurrent 
neural network (RNN). The classi  cation probabilities 
provided by these models are used along with a Viterbi-like 
algorithm in order to compute the classi  cation sequence 
with the maximum likelihood for any well log. Details on 
Phase 2 are provided in a subsequent section, “Phase 2: 
Supervised Learning.”

Phase 1: Unsupervised Learning
 Wellbore cave-ins usually manifest as erratic  uctuations 
in the caliper and B readings, with a slight positive shift in 
mean  and a negative shift in B, as seen in Fig. 3. Cave-ins 
result in a sudden increase in wellbore radius, which causes 
the B sonde to lose contact with the formation (Bassiouni, 
2012). Since accurate B measurement requires the sonde 
to maintain contact with the formation, the cave-in results 
in unrealistic B readings, which should be dropped in any 
subsequent analysis.

Fig. 3—Illustration of wellbore cave-in in the section between 7,500 
and 8,000 ft is characterized by erratic oscillations in the caliper ( ) and 
density ( B) measurements.
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 Toeplitz Inverse Covariance-Based Clustering 
(TICC). The primary objective of Phase 1 is to discover 
repetitions of simultaneous erratic measurements in B and  
measurements. TICC achieves this objective by segmenting 
the well log (expressed as a depth series) and learning the 
interdependencies within and between B and  readings in 
short intervals. A brief discussion on TICC is given below. 
The reader is referred to Hallac et al. (2017) for a fuller 
treatment of the TICC algorithm.

Fig. 4—A multivariate time series showing two different time signatures—
input for the TICC algorithm.

 Consider a simple multivariate time series y–(t) given in 
Fig. 4. The dimensionality of y–(t) is n = 2. The time series 
clearly contains two time signatures—a low-frequency 
signature from t = 0 to t = 2.5 and a high-frequency signature 
from t = 2.5 to t = 5. In order to cluster using TICC, y–(t) 

is transformed into a series of nw short windows of length 
w (Fig. 5a). The variables in each window are assumed 
to hold some dependency amongst each other. It is also 
expected that the dependency between variables will be 
signi  cantly different in the two regions with different 
signatures. For instance, the variances of the caliper and 
density recordings and their interdependencies are expected 
to be different in a region with wellbore cave-in from those 
in a regular wellbore. TICC captures these variances and 
interdependencies (Fig. 5b), which are distinct for each of 
the two “clusters” in the form of Gaussian inverse covariance 
matrices i  Rnw×nw,i  1,2, where Rnw×nw represents the set 
of real matrices of shape nw × nw. These i represent the 
conditional independence structure between the variables 
describing a Markov Random Field (MRF) for each cluster, 
as in Fig. 5b. In an MRF, the w values of each variable 
form the vertices of a graph (the blue and orange circles). 
There exists an edge between any two of these vertices if 
the conditional dependency is nonzero. For example, given 
the values of y1(2),...,y1(w) and y2(2),...,y2(w), y1(1) and y2(1) 
are still not independent. This kind of correlation is called 
partial correlation and indicates a stronger relationship 
than a mere correlation between y1(1) and y2(1). On the 
contrary, given the values of y1(1),y1(3),...,y1(w) and 
y2(1),y2(3),...,y2(w), y1(2) and y2(2) are independent. It is to 
be noted that y1(2) and y2(2), when plotted, may still show a 
nonzero correlation. However, this correlation may be due to 
some other confounding variable (like y2(1)), which affects 
both y1(2) and y2(2). Inverse covariance matrices i capture 
this partial correlation between the variables in each window 
for each cluster.

Fig. 5—A schematic illustration of (a) a windowed multivariate time series, (b) conditional dependencies learned by TICC, and (c) the corresponding 
inverse covariance matrix for a single cluster.

(a) (b) (c)
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 A Toeplitz matrix A of dimension m × m is a “constant 
diagonal matrix” of the form

where Aij = Ai+1,j+1 = ai j. In the case of TICC, the inverse 
covariance matrices i are structurally constrained to be a 
block Toeplitz, as shown in Fig. 5(c). This means that each 
element in A, such as a 1,a 2,...,a (m 1), is replaced by the partial 
correlation matrix between variables at different time shifts. 
For example, a0 would be replaced by the partial correlation 
between coincident measurements—y1(1) and y2(1), y1(2) 
and y2(2), and so on. Similarly, a 1 will be replaced by A1, 
the partial correlation between measurements that are one 
time step apart—y1(1) and y2(2), y1(2) and y2(3), and so on. 
Likewise, a1 will be replaced by the transpose of A1 since i 
is the inverse of the covariance matrix, which is necessarily 
symmetric. The main implication of a block Toeplitz 
structure is that, within each window, the dependencies are 
time invariant—the relationship between y1(1) and y2(2) also 
exists between y1(2) and y2(3). Having such a structure makes 
it possible for the algorithm to pick out cluster signatures 
irrespective of where in the time series it occurs.
 TICC is solved using an expectation-maximization 
(EM)-like algorithm. The number of clusters Nclust is 
speci  ed by the user. Since our objective is to classify the 
depth series of B and  measurements into good and bad 
clusters, corresponding to normal wellbore and wellbore 
cave-in, we require binary classi  cation labeling (Nclust = 2). 
Each cluster is associated with a certain signature in B and 
 in a small measurement window of length w. Thus, each 

measurement is associated with a window of measurements 
around it, to which we assign a cluster.
 Therefore, the time series is  rst transformed into 
windows, and the cluster sequence is initialized by assigning 
exactly one cluster to each window. The inverse covariance 
matrix ( ) for each of the clusters is computed by minimizing 
the negative log-likelihood, given the cluster sequence P. 
The negative log-likelihood is given by

(2)

where |Pi| denotes the number of points in cluster i, Si denotes 
the empirical covariance matrix of points in cluster i, and C 
is a constant. The log-likelihood captures the probabilities 
that a particular window of measurements belongs to either 
cluster; the variance in B and  in the bad cluster is expected 
to be more severe than in the good cluster. Since B and  
measurements in each cluster are assumed to be distributed 
according to a multivariate Gaussian, the log-likelihood is 
a function of the cluster covariance matrices (and hence the 
inverse covariance matrices i). Hence, the computation 
of i is expressed as a minimization of the negative of log-
likelihood as in Eq. 2, subject to a constraint on the structure 
of i to be a block Toeplitz.

(3)

where  represents the set of block Toeplitz matrices. 
The minimization problem is solved using the alternating 
direction method of multipliers (ADMM), the details 
of which may be found in Hallac et al. (2017); Boyd and 
Vandenberghe (2004).
 Once i is computed, we reassign clusters to each of the 
data points by solving a combinatorial optimization problem 
wherein the maximum likelihood path is computed, given 
the measurements and i. This is expressed as

(4)

 Hence, given a sequence of windowed measurements of 
B and , we compute the cluster sequence that maximizes 

the joint probability of the measurement sequence. Note 
that a switch in clusters carries a penalty of . This 
regularization is imposed to suppress frequent oscillations 
in the cluster assignment.

Results From TICC
 In Phase 1, we chose N1 = 700 wells from Data Set 1 
and formed a depth series from the B and  readings. The 
areal locations of the wells in Data Set 1 and those used for 
training the TICC model are shown in Fig. 6. N1 has been 
chosen such that wellbore cave-in signatures in different 
parts of the basin are adequately represented in the TICC 
calibration data set. Concatenation of measurements from 
several wells is justi  ed by the use of small windows over 
which TICC computes its MRF. In such a case, the number of 
windows with overlapping measurements from two different 
wells will be negligibly small. An implementation of TICC 
based on Hallac et al. (2017) is available at Hallac (2017). 
This implementation is used to train a TICC model on the 
concatenated data set.

Sen et al.
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Fig. 6—Data Set 1 (green) contains 99,000 Permian wells for which density and caliper log recordings are available. TICC is trained on a subset of 
700 wells (red).

Fig. 7—Results of bad-hole detection via caliper- B clustering using TICC are compared with those obtained via the rugosity method for three wells. 
Cluster 0 represents normal wellbore (good cluster), and Cluster 1 represents bad hole (bad cluster/wellbore cave-in).

 The predictions from the trained TICC model on four 
wells are shown in Fig. 7. The effects of changing penalty 
parameter  and the MRF sparsity parameter  are illustrated 
in Fig. 8. As  is increased, the smoothness of the predicted 
cluster sequence increases. However, this comes at the 
expense of reduced sensitivity to well cave-ins in thinner 
formations. The effect of changing  is apparent in the  rst 

and third panels of Fig. 8. With a lower value of  = 600, the 
clustering algorithm identi  es three distinct erratic signatures 
in B and , whereas  = 1,200 generates an unfragmented 
interval of erratic signatures. It is also worth noting that 

 = 1,200 ignores the thin section of erraticity at the depth of 
8,000 ft, where  = 600 identi  es it.

Automatic Detection of Anomalous Density Measurements due to  Wellbore Cave-in
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Fig. 8—Effect of changing TICC parameters: penalty ( ) and MRF sparsity ( ).

 Increasing  leads to increased sparsity on the inverse 
covariances i. This means that more elements in i are set to 
zero, resulting in a higher degree of conditional independence 
between variables. This contributes to the sensitivity of the 
clustering algorithm in identifying subsequences where 
the change in signatures between  and B is only mildly 
correlated. The effect of changing  is apparent in the  rst 
and second panels of Fig. 8. Here,  is kept  xed at 600, and 
 is changed. It can be seen that with a higher , the TICC 

only identi  es the portion near 7,500 ft where both B and  
show extremely erratic oscillations. The sections near 6,500 
and 8,000 ft are left out since the frequency of oscillations in 
 is not as much as those in B.

Phase 2: Supervised Learning
 Once the trained TICC model is used to cluster all wells 
in Data Set 1, we have a labeled data set of 99,000 wells—

Data Set 1L. The primary feature vectors in Data Set 1L are 
the following:• Depth z (ft)• Latitude LAT (degrees)• Longitude LON (degrees)• Density B (g/cc)• Gamma ray GR (API) 

 Additionally, a rolling coef  cient of variation of B 
computed over a window of length 2wr (denoted as CV B,2wr), 
around the depth of interest z (extending by length wr on 
either side of z), is also added to the list of feature vectors. 
CV B,2wr is computed as a function of depth as

(5)
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where Bi = { Bt wr , Bt wr+1,..., Bt,..., Bt+wr},  represents 
standard deviation, and  is the mean. A scatterplot of the 
input features segregated based on the labels are shown in 
Fig. 9. Depth B and CV B,2wr offer a considerable degree 
of separability between the two clusters. In general, points 
belonging to the good cluster show a higher value of B 

and a lower value of CV B,2wr than those in the bad cluster. 
Additionally, the variance in CV B,2wr is very low, whereas the 
bad-cluster points are fairly spread out in terms of CVB,2wr. 
The separation in B and CV B,2wr are evident in Fig. 10, where 
higher values of CV B, 2wr and lower values of B correspond 
to the bad-cluster sections in the wellbore.

Fig. 9—Scatterplot of input features in the training set for supervised learning, segregated by cluster number. The points in orange correspond to good 
clusters, whereas those in blue correspond to bad clusters.

Automatic Detection of Anomalous Density Measurements due to  Wellbore Cave-in
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Fig. 10—Rolling coef  cient of variance of B, CV B,2wr for a window size 2wr = 400 data points, plotted alongside B and TICC-based clustering.

 Since this is a binary classi  cation problem, the target 
variables are either 0 or 1. As outlined in “Methodology,” we 
train  ve commonly used supervised learning models—vis-
a-vis, LDA, logistic regression, random forest, XGBoost, 
and GBC—to predict the cluster number for any well, 
given the input features. These models are trained on 1,400 
randomly chosen wells from Data Set 1L and tested on 
another 600 wells from the same data set. These are shown 
in Fig. 11. Since the frequency of occurrence of bad clusters 
in the training data set was approximately one-third that of 
good clusters, we used Synthetic Minority Over-sampling 
Technique (SMOTE) (Chawla et al., 2002) to balance the 
data set before model training.
 A major drawback of using a regression-based approach 
for depth-series data is that the predictions at any point 
(depth) z are assumed to be independent of predictions at 

nearby depths (say z  1). In order to address this issue, 
we resort to a Viterbi-type approach to solving for the 
path with the maximum likelihood, subject to penalties 
for cluster switches. It is to be noted that this is essentially 
the same approach that is used to solve for the cluster 
assignments as part of TICC. The only difference is that, 
instead of computing the negative log-likelihood from the 
inverse covariance, we calculate the same directly from 
the classi  cation probabilities outputted by the supervised 
learning model.
 In addition to the  ve supervised classi  cation models 
described above, we also trained a simple recurrent neural 
network (RNN)-based model wherein the output from the 
RNN at the previous depth z  1 is fed back as the input 
for cluster prediction at z. The architecture of the model is 
shown in Fig. 12.
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Fig. 11—Data Set 1L is the labeled version of Data Set 1 (green). A subset of 1,400 wells (red) is chosen to train the supervised classi  cation models. 
The accuracy of these is tested for 600 wells (yellow).

Fig. 12—RNN-based architecture for well-log classi  cation.
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 We use two RNNs, whose outputs are concatenated and 
passed to a fully connected layer, activated by a sigmoid 
function. Each of the two RNNs takes as input a 2D array 
of input of size DRNNi × Nfeat where DRNNi stands for the 
length of the input window passed to the ith RNN, and Nfeat 
is the number of features. As shown in Fig. 12, in order to 
make a prediction at z = zpred, the input vectors at the depths 
z = {z  zspan, z  (zspan  zskipi), z  (zspan  2zskipi),..., 
z + (zspan  zskipi), z + zspan} are passed to the ith RNN. 
Such an architecture is chosen so as to provide the RNN 
with suf  cient contextual information at the ith depth without 
drastically increasing the dimensionality of the input. Dropout 
layers are added in order to prevent over  tting while training. 
Binary cross entropy is used as a loss function. The results 
obtained before and after Viterbi smoothing for different 
RNN architectures (corresponding to various values of span 
and skips) are shown in Fig. 13. The confusion matrices for 
these architectures are given in Table 1. It is seen that the 
overall classi  cation accuracy is not very sensitive to the 

architecture. However, higher spans with lower values skips 
are slower to train. Additionally, Fig. 13 shows that smaller 
spans result in increasingly noisy cluster sequences, for a 
given value of penalty in Viterbi smoothing.
 It is worth noting that training an RNN requires more 
time and computation than the models we used in the 
previous section. Hence, the training and test data sets have 
been reduced in size—we use 84 wells to train the RNN and 
36 wells to test the model. The locations of these wells are 
shown in Fig. 14.

Results From Supervised Learning
 The clustering results for a single well using the six 
models are shown in Fig. 15. The cluster predictions 
obtained by merely using a threshold of 0.5 on the predicted 
probabilities and those computed using the Viterbi-based 
approach are plotted with thin and thick green lines, 
respectively. The Viterbi-based approach evidently results in 
smoother clustering sequences as compared to the former.

Fig. 13—Performance of various RNN architectures for predicting labels in a single well. The architecture used is described by the tuple (span, skip1, 
skip2) in the heading of each panel. The signi  cance of span and skips are described in Fig. 12.
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Fig. 14—Data Set 1L is the labeled version of Data Set 1 (green). A subset of 84 wells (red) is chosen to train the RNN. The accuracy of these is 
tested for 36 wells (yellow).

 The performance of the supervised training algorithms 
(post-Viterbi smoothing) is given in Table 2. These were 
computed based on predictions from 600 wells, which were 
held out during the training phase, as a validation data set. 
However, as explained earlier, the training and test data sets 
for the RNN model consists of 84 and 36 wells, respectively.
 As seen in Table 2, even though the prediction accuracy 
for good clusters remains the same across all models 
considered, there is a marked improvement in bad-cluster 
prediction performance by using RNN.

Table 1—Classi  cation Performance of Various RNN 
Architectures 

Classi  cation performance is based in terms of percent 
true negative (TN), false positive (FP), false negative 
(FN), and true positive (TP) based on 36 test wells.

APPLICATIONS

 The primary application of the proposed bad-hole 
detection work  ow is to improve the quality of training 
data sets for formation density prediction models. In order 
to demonstrate this functionality, an unsupervised technique 
was used to detect and  ag bad-hole sections in 3,762 
Permian wells. A gradient boost algorithm (LightGBM) 
that predicts formation density was trained on 2,538 of 
these wells (Model 1). The input features consisted of z, 
location ( LAT and LON), gamma ray, sonic traveltime, and 
deep resistivity. All data points corresponding to good and 
bad clusters were used at this stage. Subsequently, these 
sections corresponding to bad clusters were deleted, and a 
second model (Model 2) was trained on the remaining data 
points (corresponding to good clusters) in the same 2,538 
training wells.
 The results for two test wells from this experiment are 
shown in Fig. 16. These indicate that, while the difference 
in predictions between the two models is negligible in 
good-hole conditions, a marked difference exists in the 
bad-hole regions. The variation in predicted density by 
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Model 1 tends to replicate the bad-hole oscillations at 
depths where wellbore cave-ins are frequent. However, on 
deleting the bad-hole densities, Model 2 predicts values that 
are interpolated from good measurements in surrounding 
regions and sections. This leads to reduced oscillations in 
density, while preserving the curve signature.

Fig. 15—Results of supervised binary classi  cation on a single test well. The plot in yellow shows the predicted probability for a bad cluster. The thick 
purple line plots the Viterbi sequence of predicted clusters.

Table 2—Classi  cation Performance of Various 
Supervised Learning Models

Models are quanti  ed in terms of percent true 
negative (TN), false positive (FP), false negative 
(FN), and true positive (TP). Note that the testing 
accuracy of the RNN is based on 36 wells, whereas 
that of other models is based on 600 wells.

 A closer look at the distribution of bad clusters in the data 
set, shown in Fig. 9 (  rst column), reveals that a signi  cant 
portion of these (blue) are characterized by low-density 
measurements and occur at shallower depths (˜2,500 ft) in 
an areal region bounded by 31.5ºN to 34.0ºN latitude and 

104ºW to 102ºW longitude. This group of measurements 
is also characterized by higher CV B,2wr, which signi  es the 
high degree of oscillations. The reduction in oscillations in 
Model 2 (trained without bad clusters) may be explained by 
the fact that density interpolation is performed based on data 
points from good clusters (orange in Fig. 9) corresponding to 
similar values of latitude, longitude, and depth. The CV B,2wr 
for these data points are also much smaller, which leads to 
smoother measurements.

CONCLUSIONS AND FUTURE WORK

 A novel work  ow to simultaneously cluster formation 
density and caliper logs has been demonstrated in this work. 
Additionally, the results of clustering have been used as a 
labeled data set for supervised learning by which bad-hole 
densities may be detected and deleted, even when  readings 
are not available. These methods have been tested on wells 
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in the Permian Basin and are shown to offer promising 
results. The clustering work  ow may greatly bene  t from 
the use of derived curves, such as density correction logs, 
as input. A comparison study between the density prediction 
using the proposed work  ow and those obtained using 
conventional density correction has been left for future work. 

Furthermore, we also plan to investigate ways to quantify 
depth-series clustering performance, with the aim of tuning 
TICC parameters for optimal results. A natural extension to 
this work would be to use the work  ow for formation top 
detection by means of multiclass classi  cation. This has 
been left for future work.

Fig. 16—Density prediction results for two test wells (a) and (b) using light GBM models trained on a data set of 2,538 Permian wells before 
(Model 1) and after (Model 2) removal of bad-hole sections, as predicted by TICC.

(a)

(b)
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NOMENCLATURE

Symbols
B = 
N = 
T =

 =
 =

LAT =
LON =
ȳ(t) =

y1,y2 = 

nw =
w =
n =

i =
Nclust =

P =
Pi =

 =
 =

 =
 =

CV =
DRNN =
Nfeat =

formation density recording
neutron porosity recording
sonic log traveltime recording
caliper recording
rugosity of caliper recording
latitude of wellbore
longitude of wellbore
multivariate time series
component univariate time series
comprising ȳ(t) 
number of windows
length of time-series window
dimensionality of time series
inverse covariance matrix of the ith cluster
number of clusters
cluster sequence
data points belonging to cluster i in P
clustering switching penalty in TICC
regularization parameter for inverse covariance
matrix sparsity in TICC
standard deviation
mean
coef  cient of variation
length of input window passed to RNN
number of input features passed to RNN
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ABSTRACT

 Archie’s empirical resistivity-saturation relation of 
1942 is widely applied in the petroleum industry. Despite 
its shortcomings, Archie’s equation is the basis for inferring 
water saturation, even in carbonates with complex pore 
structure, albeit with empirical tuning of cementation and 
saturation exponents. Industry literature is replete with 
examples of why this approach leads to erroneous estimates 
of the water saturation, and methods have been proposed 
where the range of saturation present in the reservoir has 
been subdivided into segments, each having a different 
set of exponents. Here, based on a homogenization 

INTRODUCTION

 Archie (1942) proposed a relationship between the 
formation water saturation, Sw, and its true resistivity, Rt, 
porosity, , and the resistivity of the aqueous phase, Rw, 
given by
  

(1a)

where m and n are the cementation and saturation exponents, 
respectively. Archie suggested that both m and n be set to 
two. De  ning R0 as the resistivity for aqueous saturation of 
unity with a  uid of resistivity Rw, 

  (1b)

Archie further set the ratio,

  (1c)

where the ratio came to be known as the Resistivity Index 
(RI), denoted by I.

methodology, we propose an effective resistivity model 
of an inter- and intragranular vuggy carbonate, when the 
pore sizes in the subsystems are well separated. The model 
is applied both for water-wet and mixed-wet rocks with 
appropriate modi  cations. Methodologies for apportioning 
pore fractions and their sizes depend on the openhole 
logs and/or core data. Computed results show signi  cant 
deviations from Archie correlations in microporous or 
vuggy intervals.  Results are veri  ed on several Middle 
East carbonate formations against core and evidence from 
nuclear logs.

 In many carbonates, m and n take on values much 
different from two and are thought to be saturation 
dependent (Sweeney and Jennings, 1960; Lucia, 1983; 
Focke and Munn, 1987; Dixon and Marek, 1990). Keller 
(1953), Sweeney and Jennings (1960), Morgan and Pirson 
(1964), Mungan and Moore (1968), Donaldson and Siddiqui 
(1989), and Tsakiroglou and Fleury (1999) advocate relating 
saturation exponent to wettability state. Dixon and Marek 
(1990) and Ma et al. (2005) suggested that the saturation 
cycle in the reservoir be  rst identi  ed, and a different set 
of Archie parameters be applied to each identi  ed cycle. 
Although the exponent may differ with a quanti  able 
wettability, and more importantly, with the directionality of 
saturation change, particularly in oil-wet media, the apparent 
variability of the exponent due to microscopic structure 
remains to be quanti  ed.
 Complex geometries in carbonates may be 
conceptualized as a juxtaposition of different pore systems 
(Archie, 1952; Dunham, 1962). The resulting capillary 
pressure may be approximated as a homogenized curve of 
systems in capillary equilibrium. Water saturation is different 
within each microscopic heterogeneity (by which we mean 
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that on the length scale of the larger feature, homogenization 
of small-scale features alone is feasible), and the composite 
behavior may deviate measurably from Archie-like behavior. 
By homogenizing a smaller-scale feature, we also bypass 
issues with regard to accessibility because it is assumed 
to be “locally in  nite.” This is an approximation, which, 
in the limit of the macroscopic length to the microscopic 
scale (a pore size) going to in  nity, becomes exact. Thus, 
the medium is approximated by each system having its own 
capillary pressure curve, and our assumption of access to 
each system is based on local capillary pressure equilibrium. 
For example, in a water-wet inter/intragranular system, 
wherein the two characteristic pore sizes differ considerably, 
hydrocarbon migrates into the intergranular network before 
accumulating within grains. The displacement sequence is 
reversed during water-based mud-  ltrate invasion in water-
wet media. Accessibility to vugs of an invading phase may 
occur when the interspersed smaller-scale pore system may 
have a negligible invading phase. The invading phase may 
span the intergranular pores negligibly as long as the length 
of intergranular pore space between vugs is suf  ciently 
large in length measured in pore units (L). At the onset of 
percolation, the invading phase has a saturation that scales 
as L– / v where  and v are percolation exponents, whose ratio 
is approximately 0.5. (Chandler et al., 1982;  Stauffer and 
Aharony, 2018). Thus, even when there is no size overlap 
between vugs and intergranular pores, this assumption is 
not impractical. Conversely, when the vugs have their own 
communicating pathway, accessibility to vugs independent 
of the intergranular pathway is assured.
 For multipore systems, Petricola et al. (2002) proposed 
a sequential method of applying the Archie equation for 
a rock partitioned into three systems. Here, we propose a 
solution for a rock partitioning similar to that of Petricola et 
al., though the topology and the effective conductivity 
relationships rely on the homogenization methodology 
of Ramakrishnan et al. (2001). The intragranular (micro) 
pores are within the grains, the intergranular (macro) pores 
are between grains, and the vugs are dissolution features, 
also represented by the absence of grains. One input to 
pore partitioning is based on nuclear magnetic resonance 
(NMR) data; we suggest a multitude of inputs that enable a 
quantitative breakdown of porosity into its components.
 Our present method is demonstrated for several 
cases of initial water-wet carbonate formation that have 
been subject to oil migration and, possibly, subsequent 
wettability alteration. We also consider the case when such 
a formation is subject to invasion by a water-based mud 
 ltrate. With a view to keeping the method objective but 

practical, we provide detailed guidance for the selection 
of the parameters of the transform. The approach, while 
simple, honors the petrophysical principles governing the 
ingress and extraction of hydrocarbon in microscopically 
heterogeneous carbonate formations.
 The necessity for saturation equations honoring the 
underlying pore-length scales and their topological 
placement is exempli  ed by examples in vuggy carbonates. 
For a given porosity, these exhibit high resistivity, even 
when water  lled (Asquith, 1985), which can lead to 
futile production tests in water zones. Several researchers 
(Nugent et al., 1978; Brie et al., 1985) have developed 
methods to estimate m from a measure of the vug fraction 
from consideration of classical homogenization methods 
for spherical inclusions. The use of an elevated m value 
while holding the saturation exponent n at two results in 
an increase in the estimated Sw and is not self-consistent. 
Asakura et al. (2001) and Grif  ths and Carnegie (2006) 
published examples of saturation computed from the 
thermal neutron-capture cross-section ( ) log recorded 
by pulsed-neutron tools consistently showing higher oil 
saturation, especially near the oil-water contact, compared 
to that estimated from resistivity logs applying existing 
interpretation methods. They argued (as also Petricola and 
Watfa, 1995) that the brine-  lled microporous grains around 
the oil-  lled intergranular pores and vugs provide alternative 
conduction paths that, when not correctly accounted for, 
leads to pessimistic oil saturation estimates.
 Thus, a self-consistent resistivity model that honors 
not only the distribution of the multiple phases, but also the 
effective conductivity due to their topological arrangement 
is needed for saturation estimation from openhole logs, 
particularly those with multiple depths of investigation. 
These models should account for accumulation and invasion 
pathways and wettability modi  cation, if identi  able. 
Reserves estimates may be biased otherwise.

EFFECTIVE MEDIUM MODEL

  Ramakrishnan et al. (1998, 2001) proposed a topological 
model of carbonate rock comprising microporous grains 
constituting intragranular porosity with intergranular or 
macroporosity between the grains. Vugs are depicted as 
dissolution events wherein one or more grains are missing. 
Figure 1 describes such an arrangement. Vv, Vm, and V  are 
the pore volume as a fraction of the whole rock contained 
in the vugs, intergranular pores, and intragranular pores, 
respectively. Their model applies to the topology regardless 
of the absolute pore sizes, as long as the characteristic pore 
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scales are well separated. It is noted that the sum of Vv, Vm, 
and V  is the total porosity, t, of the rock.
 To estimate the conductivity of such a rock under brine-
saturated conditions, Ramakrishnan et al. (2001) accepted 
that the intergranular and intragranular pore systems obeyed 
the Archie correlation. The effective medium they chose was 
an extension of the differential Bruggeman approximation 
(Landauer, 1978) that in the limit satis  ed the requisite 
correlation of Archie (1942). In their model, in the absence 
of scale invariance, the conductivity of the brine-  lled grain 
( 0g) is given by

  (2)

 Fig. 1—Pictorial depiction of the Ramakrishnan et al. (1998) model for 
carbonate rocks.

porosity, v, is identical to the vug volume fraction, Vv.
 The porosity exponent is different for the intra- or 
intergranular pore systems and is designated by the 
corresponding subscript  or m. However, in practice, there 
is rarely suf  cient data to support two different parameters. 
Hence, for the examples shown later, a single value of m is 
assumed for both pore systems.
 In the above-mentioned work, the conductivity of the 
whole rock  lled with brine when vugs are also present is 
given by symmetric Bruggeman solution
 

(5)

 Knowing the conductivity of the brine-saturated rock, 
the effective Archie porosity exponent
  

(6)

 The length scale of resistivity measurement is a fraction 
of a meter to a few meters for downhole application and a few 
centimeters for laboratory cores. The differential effective 
medium theory or the symmetric Bruggeman approximation 
is applicable to such a resistivity measurement provided 
that at the length scale of the measurement, the microscopic 
features of the vugs, intergranular, or intragranular pores 
appear as a continuum. For us, this is satis  ed quite adequately. 
This is not to say that the effective medium theories are exact 
in the asymptotic limit of feature size over the measurement 
limit approaching zero. The models are correct only under 
conditions of dilute inclusions, and any extensions of it to 
non-in  nitesimal fractions of one component within the 
other is to be considered an approximation that can only be 
validated experimentally. Our earlier studies have supported 
the approach we have taken through experimental data 
obtained in fully saturated systems. For further reading, we 
refer the reader to Ramakrishnan et al. (2001) for data and 
Markel (2016) for the theoretical background.
  The validity of the Ramakrishnan et al. model can be 
veri  ed by core measurements of the Archie m exponent 
along with volume fraction estimates of the three components 
of porosity. These fractions may be approximated through 
optical and scanning electron microscope (SEM) petrography 
or from NMR and/or electrical images as proposed by 
Allen et al. (2001), Ramakrishnan et al. (2001), and others 
(Asakura et al., 2001; Gomaa et al., 2006). Mercury injection 
pore-size distributions may be used, though we recognize 
that this is a distribution of pore volume shielded by throats 
and is affected by the pore-space topology. When supported 
by petrographical evidence, mercury injection data is an 
inexpensive source of information on the pore partitions. 

where  is the intrinsic porosity of the grains given by

  (3)

 The conductivity, 0 m, of the assemblage of such brine-
 lled microporous grains with brine in the intergranular pore 

space is computed from the modi  ed differential Bruggeman 
effective medium conductivity result (Landauer, 1978; 
Ramakrishnan et al., 2001):

(4)

 We note that  the term on the left of Eq. 4,     Vm  is the 
intrinsic intergranular porosity, m, while the intrinsic vug 
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The identi  cation of pore partitions is often dif  cult without 
an identi  able transition in slope.

Fig. 2—Log-derived Archie m exponent from the current model 
compared to the measurement of the same parameter on core extracted 
from a Cretaceous carbonate formation. Note that we use the term micro 
to mean intragranular and macro to mean intergranular. No intrinsic 
absolute size is inferred. 

 We have extensively validated the Archie m computation 
from the Ramakrishnan-Bruggeman model based on pore 
partitions estimated from borehole logs with that measured 
on cores taken from the same well. Figure 2 is an example of 
a Cretaceous carbonate formation. Over 600 high-pressure 
mercury injection (MICP) end-trim samples were used 
to validate the pore partitions. The last track on the right 

compares our model m computed from the partitions derived 
from logs with the m measured on cores. Figure 3 shows 
a similar comparison of our model m estimated from log-
derived pore partitions versus that measured on cores on a 
Jurassic carbonate reservoir in the Middle East. The pore 
partitions were con  rmed by measurements on conventional 
core acquired over the same interval. Our model m is 
validated with core plug measurement every 6 feet. Similar 
validation was obtained on several Cretaceous and Jurassic 
reservoirs across the Middle East.

 Fig. 3—Comparison of log derived Archie m exponent using the current 
model and that measured on core from a Jurassic carbonate reservoir. 
Zone of biodegraded heavy oil with associated bitumen just below 
X100 ft is highlighted. Both log- and core-derived pore partitions in this 
zone are not reliable.

Towards a Petrophysically Consistent Implementation of Archie’s Equation for Heterogeneous Carbonate Rocks
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EFFECTIVE MEDIUM WITH HYDROCARBON

 To account for the effect of hydrocarbons, each of the 
three underlying equations of the Ramakrishnan-Bruggeman 
model must be modi  ed. The new model is called the Raghu-
Ramakrishnan model (referred to as the R-R model in the 
remainder of the paper). The conductivity of the grains with 
porosity  is
  

(7)

where g is the conductivity of the grains, and Sw  is the 
water saturation within the grains. For completeness, the 
equations shown here allow for different n for each pore 
system designated by the corresponding subscript  or m. 
In the examples discussed later, we have used a single value 
of n for both intragranular and intergranular pore systems, 
although this assumption may be removed by introducing an 
additional parameter.
 For application to the assembly of grains, we  rst 
recognize that the effective conductivity of the intergranular 
 uid may be replaced by wS nm

wm , where Swm is the aqueous 
phase saturation in the intergranular pores for correct 
limiting behavior. This then allows us to modify Eq. 4 for 
the conductivity of an assemblage of microporous grains in 
a partially saturated intergranular porous network to

  (8)

 We see that, in the limit of   0 and the grains 
having zero conductivity, the correct Archie expression for 
intergranular unimodal pore system is retrieved. 
 The treatment of partial saturation in the vugs is more 
complicated. In any given vug, the  uid is either all brine or 
all hydrocarbon. During imbibition, in a water-wet medium, 
if we choose to retain all of the oil in vugs, the capillary 
pressure curve is vertically down, post-drainage. During the 
early part of the drainage, oil may be present only in a fraction 
of the vugs. Then, oil saturation would be less than unity in 
the vug system. If all vugs are  lled with hydrocarbon, Eq. 5 
changes to
  
 (9)

where  is the rock conductivity. Solving for , we get

  (10)

 If, however, some vugs are  lled with brine and the rest 
with hydrocarbon, we need to modify Eq. 5 for conductive 
and nonconductive inclusions. Recognizing that Swv is the 
fraction of vug volume  lled with brine and (1 – Swv) is the 
fraction  lled with hydrocarbon, we can use the symmetric 
Bruggeman relationship for the conductivity, , of the rock 
with the water-  lled and oil-  lled vugs as follows
 

 (11)

 For a given saturation, these equations enable us to 
solve for conductivity for any saturation, provided proper 
accounting is carried out for apportioning aqueous phase 
fractions within each pore system. We do this by satisfying 
capillary pressure equilibrium, i.e., the sequence of occupancy 
due to well-separated capillary pressure curves is obeyed, 
without being concerned with access pathways to any of the 
systems, as stated in the introduction. This is tantamount to 
well-separated characteristic pore sizes for the three systems, 
each of them having a reasonably broad distribution that 
doesn’t overlap measurably, and also having length scales 
such that each successively smaller-size systems’ network 
appears to contain a suf  ciently large number of pores that a 
system spanning path within it may be formed by an invading 
phase at nearly zero saturation of it. The reverse problem of 
estimating the saturation in each of the three pore systems 
and, consequently, the saturation in the whole rock given 
the conductivity cannot be solved uniquely unless some 
additional information is brought to bear.

PETROPHYSICAL CONSISTENCY

 The preceding discussions provide a method to 
calculate the conductivity of a partially saturated rock. They 
do not stipulate how the saturation in the different pore 
systems may be quantitatively related, other than stating 
that capillary equilibrium must be taken into account. We 
propose to apply petrophysical insights in determining the 
order of desaturation and resaturation of the pore systems 
for estimating pore-component saturations, including when 
wettability changes may affect occupancy sequence. These 
insights relate to the individual pore-system saturations such 
that, at any point in the reservoir, only one pore system is 
undergoing a change in saturation, and the other two pore 
systems are automatically de  ned.
 Formations laid down in marine environments are water-
wet at least prior to hydrocarbon accumulation (Masalmeh 
and Oedai, 2011). Hence, the initial emplacement of 
hydrocarbons occurs under water-wet conditions, and 
the nonwetting  uid enters vugs, intergranular pores, and 
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intragranular pores, in that sequence (Robin, 2001). For 
practical purposes, it is reasonable to assume that the pore 
sizes are well separated in the three pore systems (any 
overlap is marginal), and therefore intrusion of one pore 
system occurs only after the displacement process completes 
in the larger pore system. 
 The separation of occupancy sequence into each 
class of pore system is justi  able if the pore sizes are well 
separated that the capillary pressure curves do not overlap. 
To see that this is reasonably founded, let us start with vugs 
having a size at least equal to that of a grain consisting of 
a large number of intragranular particles. Thus, the vug 
radius is much larger than that of intragranular particles, and 
therefore, intragranular pores. Now, the separation between 
grains is that of the intergranular pore, whose length scale 
is a fraction of a grain size for a reasonable packing without 
signi  cant deformation of the grains. Now, even with 100 
particles within a grain and a 0.2 porosity for the grain, 
the grain radius is about eight times larger than that of the 
particle. Thus, the characteristic intraparticle pore size is 
expected to be about eight times smaller than that of the 
characteristic intergranular pore. Size separation within the 
three-pore system, an assumption of our model and a common 
occurrence in several major Middle East carbonates, assures 
us that in drainage, invasion of hydrocarbon is mostly 
sequential.
 The sequence of aqueous phase reentry may be 
complicated by wettability changes due to hydrocarbon 
presence, particularly those with acidic components whose 
chemical structures facilitate contact angle change following 
extraction into the aqueous phase (Fathi et al., 2011). In a 
transition zone, where hydrocarbon migration is incomplete, 
the medium could be mixed-wet, further complicating 
the occupancy sequence. Strict reversal of occupancy in 
pore systems with separated length scales is applicable 
when no wettability change is induced by the hydrocarbon 
components.
 For practical applications, we can impose a threshold 
hydrocarbon saturation (set at 50% in the current 
implementation) within any given pore system before we 
consider that pore system being altered to oil-wet. For 
instance, if intergranular pores have been saturated with 
oil and the intragranular pores remain more than 50% 
water  lled, then the former is changed to oil-wet while the 
latter remains water-wet, and the entire system is said to be 
mixed-wet. This is a speci  c case of mixed-wet. Pore-  uid 
replacement during water intrusion occurs by  rst displacing 
oil from the intragranular pores followed by oil displacement 
in the vugs and,  nally, the intergranular pores. No phase 

replacement consideration is needed for intragranular pores 
if there has been no entry of hydrocarbon during drainage.
 It must be emphasized that wettability alteration is also 
dependent on the nature of the rock and the hydrocarbon. 
For example, a dry gas reservoir may remain water-wet, 
even at high-gas saturations. Core studies performed on 
reservoir rock samples using hydrocarbons from the  eld 
should guide to con  rm assumptions of wettability change. 
In our implementation, the user provides the wettability 
logical parameter for allowing wettability assessment at a 
user-de  ned threshold pore-component saturation.
 The wettability assessment does not aim to determine 
the actual contact angle, only whether the rock is water-wet 
(contact angle < 90°) or oil-wet (contact angle > 90°). This 
is because our interest is only to determine the accessing 
sequence to each pore system.

PRIMARY DRAINAGE 

 For implementation, we propose a sequential application 
of the R-R model. Let us consider the primary drainage 
cycle  rst. For the deep-resistivity tool, measuring Rt, the 
reservoir is deemed to be under primary drainage, i.e., 
represents the uninvaded resistivity away from the borehole. 
The condition of primary drainage in the undisturbed region 
is not a limitation of the R-R model; it is just speci  c to the 
implementation discussed in this paper.
 The method involves estimating the conductivity of the 
water-  lled formation (R0) followed by the conductivity at 
the end of  ll of each pore system in order of vugs, then 
intergranular pores, and,  nally, intragranular pores. Each 
pore system only  lls to its residual water saturation (Swr). 
Though not required, in our current implementation, Swr in 
vugs is assumed zero (Petricola et al., 2001). Similarly, based 
on scale invariance, Swr is the same for both the intergranular 
and intragranular systems, though this assumption may be 
removed. Benchmark conductivities are computed at the 
maximum hydrocarbon saturation of each pore system:

• RvHC: vugs  lled with hydrocarbon, rest brine
• RmHC: intergranular porosity  lled with hydrocarbon   

 to Swr; intragranular has brine
• R HC: intragranular porosity also  lled with    

 hydrocarbon to Swr

 These form the thresholds for determining the pore 
systems that have been drained by the hydrocarbon. The 
measured resistivity, Rt, is compared to each of the above to 
determine the smallest pore system containing hydrocarbon 
and its extent of drainage. 

Towards a Petrophysically Consistent Implementation of Archie’s Equation for Heterogeneous Carbonate Rocks
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If R0  Rt < RvHC, the vugs are partly  lled with hydrocarbon, 
while both intergranular porosity and intragranular porosity 
remain water  lled (Swm = 1; Sw  = 1). Eqs. 2 and 4 provide 
the intrinsic conductivity of the water-  lled intra-interhost 
medium, 0 m. Then, Eq. 11 is used to compute the saturation 
in the vugs. The total water saturation, Swt, is given by:
  

(12)

 If RvHC  Rt < RmHC, then vugs are oil  lled, intragranular 
pores are water  lled, and intergranular pores are partly 
drained. Swv = 0, Sw  = 1. The conductivity of the microporous 
grains is computed from Eq. 2. The intrinsic conductivity of 
the host (intra+intergranular) medium to vugs is computed 
from Eq. 10. The saturation in the intergranular pores is 
obtained from Eq. 8. The total water saturation, Swt, is given 
by Eq. 12.
 If RmHC  Rt < R HC, then vugs are oil  lled, and 
intergranular pores are drained to Swr. Intragranular pores are 
partly drained. Swv = 0, Swm = Swr. The intrinsic conductivity of 
the host medium is computed from Eq. 10. The conductivity 
of the microporous grains can be computed from Eq. 8. The 
saturation in the intragranular pores can then be calculated 
from Eq. 7. Swt is computed from Eq. 12 as before.
 In summary, knowing the cutoff resistivities for complete 
drainage into each system and comparing the measured 
resistivity to Rt to the cutoffs enables us to obtain the system 
that is partially  lled and sequentially solve for saturation in 
the partially  lled system and the total saturation.

WATER INTRUSION

 In the case of a hydrocarbon-bearing formation 
intersected by a borehole drilled with water-based mud, the 
invaded zone resembles a water  ood. The shallow Rxo log is 
expected to represent the  ushed zone resistivity and is used 
to compute the  ushed zone saturation, Sxot, and, therefore, 
the remaining oil saturation = 1 – Sxot.
 The water  ood cycle must account for the wettability 
state of the rock. Based on prior studies to determine 
whether the formations are altered to oil-wet after drainage, 
we facilitate accounting for changed wettability through 
the wettability logical parameter. This is used within each 
pore system provided a threshold hydrocarbon saturation 
is exceeded within that system. When the water  ood is 
complete in any given pore system, the saturation in that 
system reaches the residual oil saturation, Sor, for that 

system, which varies with the initial oil saturation and the 
maximum Sor (denoted SorM) possible for that system. A form 
of such a relationship is due to Land (1968) and is applicable 
for water-wet media. For any wettability, the functional form 
may differ, but a dependency is expected. For the present, we 
apply this relationship, noting that it may be readily replaced 
by any other function, if empirically known.
 The processing approach for the water  ood is very 
similar to that for drainage after the wettability state is 
de  ned—water-wet, mixed-wet, or oil-wet—which, in turn, 
de  nes the sequence in which each pore system gets  ooded. 
For water-wet media, the sequence of water  ood is  rst 
intragranular, followed by intergranular, and  nally vugs. In 
the case of oil-wet, the sequence is  rst vugs, followed by 
intergranular, and  nally intragranular pores. The mixed-wet 
case is invoked speci  cally for intragranular pores remaining 
water-wet, while the intergranular pores and vugs become 
oil-wet. The sequence, in this case, is  rst intragranular pores, 
then vugs, and  nally intergranular pores, in accordance with 
the progressive increase in water pressure in comparison to 
oil pressure. Capillary equilibrium, along with the direction 
of phase pressure difference, dictates the sequence. 
 An initial benchmark invaded zone rock resistivity, Rinv0, 
is computed for the rock at the identical saturation state as at 
the end of drainage, but with the replacement of the formation 
water salinity with that of mud  ltrate. This represents 
the start of saturation change during the water  ood. As in 
drainage, benchmark total rock resistivities are determined at 
each limit of  ood of the pore system—Rinv1, Rinv2, and Rinv3—
with the subscripts 1, 2, or 3 representing the  rst, second, 
and last pore system to be  ooded during the water  ood. 
The speci  c sequence is dependent on the wettability state at 
the end of drainage. The measured  ushed zone resistivity is 
compared to the benchmarks to decide the stage of intrusion 
within the pore systems and identify the un  ooded ones. 
Saturation at its  ood completion is the Sor for that system. 
For the pore system not affected by the water  ood, only the 
formation water is replaced by the mud  ltrate without any 
change in the saturation. The saturation, Sxo, for the system 
undergoing  ood is calculated from the corresponding 
partial saturation equation for that pore system (Eq. 7, 8, or 
11). After the individual pore-system saturation is de  ned, 
the total  ushed zone water saturation, Sxot, is computed as
 
 (13)

 A detailed description of the implementation for both 
drainage and water  ood is provided in Appendix 1.
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RESISTIVITY INDEX MODELING RESULTS

 Our model was used to compute the resistivity index 
for various combinations of pore-component fractions in 
drainage and water intrusion cycles and changed wettability. 
For complete drainage, in each case, hydrocarbon 
intrusion proceeds until the rock is at residual water 
saturation progressively in each pore system from vugs to 
intragranular, in that order. Similarly, water  ood intrusion 
occurs until all pore systems are at their respective residual 
oil saturation. However, the sequence is dependent on any 
wettability alteration. When comparing these results to direct 
measurements on cores, it is important to remember that in 
the laboratory it is very dif  cult to achieve high enough 
capillary pressures to drain intragranular pores to residual 
water. However, several Middle East carbonate reservoirs 
have suf  cient column height that a signi  cant portion of 
the grain porosity is  lled with hydrocarbon near the crest of 
the structure; therefore, the models heretofore are deemed to 
be representative of conditions in the reservoir.
 Figures 4 through 7 present the results of the modeling. 
In each case, the following parameters are assumed:

• n for inter- and intragranular pores = 2
• Swr in micropores and macropores = 0.05
• SorM for all three pore systems = 0.3
• m for inter- and intragranular pores = 1.7

 Points for primary drainage are shown in solid black 
triangles, and those for water intrusion are shown in open 
triangles (water-wet), open circles (mixed-wet), and open 
diamonds (oil-wet). The mixed-wet case assumes that the 
intragranular pores remain water-wet, while the intergranular 
pores and vugs are altered to oil-wet at the end of drainage. 
The drainage cycle is assumed to proceed under water-wet 
conditions in all cases. It is to be noted that the speci  c mixed-
wet case wherein both the intragranular and intergranular 
pores remain water-wet and the vugs are altered to oil-wet is 
not separately modeled since the sequence of the water  ood, 
in this case, is the same as that for water-wet.
 Inferences from the computations differ with the phase 
replacement cycle and are summarized accordingly. Note 
that we have left the residual oil saturation SorM the same 
regardless of the wettability, in order to facilitate comparison 
just due to sequential occupancy difference.

Drainage Cycle Observations
 In the presence of vugs, the initial change in resistivity 
index, RI, follows a trend where the saturation exponent n 
is close to unity and never exceeds 1.5. The conventional 

approach of assuming n = 2 will result in a signi  cant 
increase in the estimated Sw. Since vugs are the  rst to be 
 lled during hydrocarbon migration, we would expect the 

effective n close to the oil-water contact (OWC) will be less 
than 1.5. This has been observed and reported by Grif  ths 
and Carnegie (2006) who compared saturation from 
resistivity with that from pulsed-neutron logs and concluded 
that very low values of n are required close to the OWC to 
match the two estimates (where these rocks were vuggy and/
or had signi  cant intergranular porosity).
 During drainage of the intergranular pores, effective 
n ranges from 1.4 to 1.8. Finally, during the drainage of 
the intragranular pores, the effective n further increases, 
approaching a value of two. These results are consistent 
with the observations of Grif  ths and Carnegie (2006), 
who remarked that high in the column and at low-water 
saturations, the estimates from resistivity and capture cross-
section log can be reconciled with n  2.
 We emphasize that our model does not require the user to 
modify the intrinsic values of either m or n. The intergranular 
and intragranular m is set based on measurements on 
micritic homogenous core samples from the same formation 
(Ramakrishnan et al., 1998). Alternately, it can be set based 
on the minimum m measured on a large set of core samples 
from across the reservoir or formation. Another reliable 
input for this parameter is from a water zone with known 
formation water resistivity and porosity and reliable Rt log. 
The intergranular m can be calibrated, such that the modeled 
m matches that estimated from the resistivity log.

Water  ood Cycle Observations
 The behavior during water  ood is very different for 
each of the three cases—water-wet, oil-wet, and mixed-wet. 
Negligible hysteresis is observed if rock remains water-wet 
after oil migration. Hysteresis is larger for mixed-wet and is 
pronounced for oil-wet rocks. This is in line with observations 
in the  eld. The magnitude of hysteresis increases with Vv. 
We observe that the effective n during water  ood can exceed 
a value of three for mixed-wet and oil-wet rocks.
 Hysteresis has implications for the estimation of the 
 ushed zone saturation. The difference between oil saturation 

in the undisturbed zone and that in the  ushed zone is the 
moved hydrocarbon, and it is a measure of the recoverable 
reserves in the rock. Using an incorrect n of two will result 
in too high a hydrocarbon saturation in the  ushed zone and, 
consequently, too low an estimate of moved hydrocarbon 
(Lalanne et al., 2010). Hence, by automatic adjustment of 
the effective n to lower values during drainage and higher 
values during water  ood, an increase in moved hydrocarbon 
is expected.
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Fig. 4—RI modeling results for carbonate rock with 6-p.u. vugs, 10-p.u. 
macropores, and 14-p.u. micropores.

Fig. 5—RI modeling results for carbonate rock. Intergranular porosity 
and vug fractions increased at the expense of intragranular porosity 
compared to that in Fig. 4.

Fig. 6—RI modeling results for carbonate rock without vugs.

Fig. 7—RI modeling results for carbonate rock with negligible 
microporosity.

APPLICATION TO WELL-LOG DATA

 The algorithm was tested on several wells from Middle 
East reservoirs. In each case, it is assumed that the formation 
and crude properties enable the wettability to change from 
water-wet to oil-wet in the pore systems accessed by oil by 
more than 50% in pore volume.
 As can be seen, in addition to parameters that would 

be required for a typical Archie saturation computation, the 
algorithm requires just a few additional parameters:

• Pore-partition volume fractions
• Residual water saturation, Swr
• Maximum residual oil saturation, SorM
• Wettability logical parameter: Default is zero and 

implies no wettability alteration; one if adequate 
presence of crude alters wettability.
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Table 1—Listing of User Inputs and Computation Outputs

Table 1 provides a listing of all user inputs and program outputs. 
Inputs may be either zoned parameters or log channels.

EXAMPLE 1: MIDDLE EAST WELL 1

 Because a key input to the new model is the apportioning 
of porosity, we compare the processed results against 
available core data. Figure 8 displays results from log 
processing on a Middle East well 1 (MEW-1). The interval 
shown is an oil-bearing Cretaceous carbonate. Borehole 
NMR and electrical images were combined to generate the 
partitions from logs. The Ramakrishnan et al. (2001) model is 
used to generate the log-derived m from the partitions. There 
is only one user-de  ned input, the intergranular m, and this is 
usually determined based on measurements on homogenous 
micritic samples (Ramakrishnan et al., 1998). However, it 
may also be tuned based on the match to the entire set of 
samples. For the present example, m = 1.7 best matches 
the core measurements. This value is also reasonable from 
local knowledge. Core partitions were generated from high-
pressure mercury injection measurements. Associated plugs 
at the same depth were measured for formation resistivity 
factor and Archie m exponent. Core measurements are 

performed on samples around 1 in. in diameter and no more 
than 1½ in. in length, whereas log measurements scan a 
volume of the formation of approximately 1 ft3 in the region 
adjacent to the borehole; therefore, the correspondence 
between the two sets of measurements is acceptable.

Fig. 8—Comparison of partitions and Archie porosity exponent against 
measurements on core on MEW-1. Micro and macro imply intragranular 
and intergranular, respectively.

 For our initial attempt, we have set both Swr and SorM 
to 0.1. The results are displayed in Fig. 9. Track 2 displays 
the overlay of the Rt log with the drainage benchmarks. 
Track 3 displays the overlay of the Rxo log with the 
benchmarks from the water-intrusion cycle. There is 
a water zone at the base of the lower formation. The 
match between Rt and R0 con  rms the value of Rw used 
for processing. Likewise, the match between Rxo and Rinv3 
con  rms the value of Rmf used in the processing.
 In the zone highlighted by the orange rectangle, we 
observe that the Rt log reads higher than the benchmark 
R HC. Given that the latter represents the maximum expected 
resistivity of the formation, the mismatch implies an error in 
the input parameters. Most likely, the value of Swr is too high 
and needs to be adjusted.
 Likewise, the cyan rectangle highlights a systematic 
difference between the benchmark Rinv3 and the Rxo log. Such 
a consistent separation points to a parameter error—most 
likely SorM. The value will need to be increased to improve 
the match.
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Fig. 9—Results for initial processing of data from MEW-1 using Swr = 
Sor(max) = 0.1, n = 2, and Rw and Rmf set from local knowledge. Macro 
implies intergranular, and micro is synonymous with intragranular.

 Processing was repeated with Swr = 0.06 and SorM = 0.25. 
Figure 10 shows the results on the resistivity overlays. The 
Rt log overlaps with R HC at the top of the logged interval. 
There is also a better match between the Rxo log and the Rinv3 
over the entire interval. Both of the adjusted Swr and SorM 
parameters are important for reservoir simulation. This is a 
very valuable output from our model.
 Figure 11 displays the computed saturation results from 
our model and compares that to the saturation computed 
using Archie’s equation with n = 2 and Bruggeman m. 
 Tracks 2 and 3 present the comparison. To the left 
of Track 2, we present the difference between the two Sw 
estimates—Archie Sw and the present model Sw. A positive 
difference is when our model predicts a higher oil saturation. 
While both estimates are nearly identical towards the top of 
the column, lower down in the transition zone, our model 
predicts 5 to 10 saturation units’ higher oil saturation. 
This is consistent with the RI behavior observed in the 
previous section. Track 3 displays the comparison of Sxo. 
The difference log this time is Sxo_model – Sxo_Archie. A positive 
difference indicates lower oil saturation in our model results. 
We observe there is 2 to 5 saturation units’ difference over 
most of the reservoir interval. The moved oil is shown by 
the shaded region in Track 4 (Archie) and Track 5 (present 
model). More moved oil is seen in the results of our model.

Fig. 10—Results on MEW-1 using re  ned parameters for Sor_max and Swr.

Fig. 11—Final results on MEW-1 comparing saturation from our model 
with that using Archie’s equation with n = 2 and Bruggeman m.
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EXAMPLE 2: MIDDLE EAST WELL 2

 Our second case study is of a well drilled with oil-based 
mud (OBM). Several logs were recorded on wireline, such as 
array induction, epithermal neutron, triple-detector density, 
and NMR. Due to the presence of the OBM  ltrate and 
formation hydrocarbon within the volume investigated by 
the NMR tool, we were unable to use the NMR data directly 
for pore partitioning. Fortunately, just 70 m away, a parallel 
well was drilled using water-based mud, and excellent NMR 
data were recorded on this well. Using the porosity log as 
guidance, we mapped the relative proportions of vugs and 
intergranular and intragranular porosity onto this well. 
Although this is not a substitute for direct measurement, it is 
an acceptable approach given the expected lateral variation 
of properties in the reservoir and the proximity of the two 
wells. Substantial vug porosity is present over the reservoir 
interval. The epithermal neutron tool also makes a shallow 
measurement of the thermal neutron-capture cross section 
( ) and is therefore affected by changes induced by invasion 
from the borehole  uid.
 Figure 12 presents the data and results on well MEW-2. 
The array induction data are shown in Track 3 where the 
resistivity measurement at  ve depths of investigation (DOI) 
are shown. The shallowest and deepest have a nominal DOI 
of 10 in. (0.25 m) and 90 in. (2.29 m), respectively. Two 
intervals are highlighted. In the orange-shaded interval, 
the 90-in. log (red) reads less than the 10-in. log (green), 
indicating that the oil from the OBM is displacing water 
and increasing the resistivity in the vicinity of the borehole. 

In the blue-shaded interval, all  ve resistivity curves stack 
on top of each other. This implies there is no change in 
resistivity, and consequently, saturation, from shallow to 
deep. Hence, the saturation estimated from the  log is an 
accurate measure of formation water saturation.
 Track 2 displays the Rt log along with the four 
benchmark resistivities of the drainage cycle. Over the 
orange-shaded interval, Rt < RmHC implying that there is still 
mobile water between grains. This explains the presence 
of invasion over this interval. On the blue-shaded interval, 
Rt > RmHC implying intergranular pores to be at Swr and oil 
drainage now occurring in intragranular pores, possibly with 
minimal invasion consequence. This is consistent with the 
 ve overlapping resistivity curves over this interval.

 Track 4 displays Sw computed using our model (red 
curve). We have also presented the Sw using the Archie 
equation, applying the Bruggeman m and a constant n equal 
to two (cyan curve). The Sw computed from the  log is 
presented in green. Over the orange-shaded interval, the Sw 
from  reads substantially less than that from resistivity. This 
is due to the presence of the invading oil from the OBM in the 
vicinity of the borehole. Over the blue-shaded interval, the 
Sw from  precisely overlays that computed from resistivity 
using our model, whereas that using conventional Archie is 
reading nearly 10 saturation units higher. The match between 
the saturation from  and our model supports our method. 

EXAMPLE 3: MIDDLE EAST WELL 3

 The third well is interesting for several reasons. The 
only resistivity log acquired on the displayed interval is an 
LWD measurement. Hence, we do not have any inference of 
Sxo. Furthermore, there is very little vug porosity observed 
on the wireline NMR log, unlike the  rst two examples. The 
short reservoir interval includes a water leg over the bottom 
third of the interval logged.
 Although there is no laboratory validation on the same 
well for the estimated porosity partitions, we have used 
parameters calibrated from NMR logs and core from nearby 
wells over the same formation.
 Figure 13 presents the results of the use of our model 
on the data of this well. The resistivity overlay in Track 2 
indicates that the section is in the transition zone, even at the 
top of the reservoir. The water zone is located below X750 ft. 
Intergranular porosity is  lled to Swr above X710 ft where 
the deep resistivity crosses the benchmark RmHC. From this 
depth to the top of the layer, the grains remain mostly water 
 lled, whereas the intergranular porosity is hydrocarbon 
 lled to Swr. Given that there is typically a factor of 10 to a 

100 difference between the permeability of the intergranular Fig. 12—Data and results on well MEW-2.
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network and that of the grain, the well should produce with 
low to negligible water cut in the interval above X710 ft. 
This is an important insight that is available from our model 
that in  uences completion design. The water saturation 
estimate from our model is less than that from conventional 
Archie by 5 to 10 saturation units affecting resources and 
reserves. Such a difference in saturation is possible, even 
without vugs.

Fig. 13—Results from LWD deep resistivity processing on well MEW-3. 
Macro and micro designations for intergranular and intragranular pore 
systems.

MODEL CONSIDERATIONS AND LIMITATIONS

 For this, we look at two aspects—the model itself and the 
implementation discussed here in this paper. The R-R model 
is expected to have wide applicability across a majority of 
the Middle East carbonate reservoirs. However, the model 
does not account for fractures, but may still be applied to 
characterize the matrix block between the fractures provided 
the vertical interval exceeds tool resolution. In low-porosity 
carbonates, fractures tend to be more prevalent, and 
therefore, any resistivity interpretation should be judiciously 
applied in conjunction with borehole image analysis. Also, 
the current model does not account for the effect of clays. In 
most Middle East carbonates, this is not a limitation.
 Our examples assume that the Rt log is an accurate 
measure of the resistivity of the rock under primary drainage 

after migration of the hydrocarbon into the reservoir. This is 
not the case when the rock has been subject to production 
and is subjected to water encroachment or when the invasion 
is deep.
 The current treatment of the Rxo log as a measurement 
of the rock after water  ood due to the invading mud  ltrate 
is not applicable in wells drilled with OBM. In such wells, 
the rock is being further drained in the invaded region, and 
the drainage logic should be applied for the computation 
of Sxo. This also assumes that the invading  uid does not 
alter the wettability over the time scale of the invasion to 
measurement interval.

GUIDANCE FOR MODEL-SPECIFIC INPUTS

 Our model requires some additional inputs to those 
required for the application of Archie’s equation in saturation 
evaluation. These are:

• Porosity partitions: Vv, Vm, V
• Intergranular porosity exponent, m 
• Residual water saturation, Swr
• Maximum residual oil saturation, SorM
• Wettability logical parameter

 The following discussions provide guidance for 
parameter assignment.

Pore Partitions
 NMR logs recorded in water-based mud are 
recommended for providing this input. Since the partitions 
represent a speci  c topological arrangement, they should 
be veri  ed through optical and SEM petrography on core 
samples acquired on the same borehole as the NMR log. Such 
an arrangement should be con  rmed on at least one well in 
the same formation, after which the approach may be applied 
on other wells. More appropriately, a facies-dependent 
NMR interpretation is recommended (Ramakrishnan et al., 
1999 and Fordham et al., 1999). Recent advances in image 
logs for OBM wells and in understanding NMR data in the 
presence of hydrocarbons (Machado et al., 2011; Cao Minh 
et al., 2016) indicate that it is possible to determine the pore 
partitions, even in such environments.
 In the absence of borehole NMR data on the target well 
or other log-derived input to pore partitions, an estimate 
may be obtained from surrounding correlatable wells. While 
several assumptions underly such an approach and is not as 
reliable as data directly measured on the well, the industry 
has for several decades made the same assumptions when 
applying layer-based Archie parameters in their evaluation 
of well-log data.
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Intergranular m
 The model requires the user to specify the Archie 
porosity exponent for unimodal intergranular porosity. 
Ideally, this should be measured on a homogenous micritic 
sample. Typically, this will also be the minimum m observed 
on a diverse set of samples taken from the same formation 
under the same overburden stress (Ramakrishnan et al., 
1998). The assumption here is that at least a few of the 
samples are uniform (unimodal pore-size distribution). It is 
also very easy to tune this parameter so that the log-derived 
Bruggeman m best matches that measured on core across the 
formation interval.

Residual Water Saturation, Swr
 This parameter is typically determined from high-
capillary pressure oil-brine porous plate measurement on the 
core. Given that it is very challenging to achieve suf  cient 
capillary pressure in the laboratory with existing porous 
plates to desaturate the microporous grains to Swr, it is best 
to determine this parameter from sample inlet images during 
drainage experiments at high enough injection pressure, 
without violating the low-capillary number limit, best 
achieved having suf  ciently long core samples.
 Where there is suf  cient column height in the reservoir 
to fully desaturate the micropores, as in Example 1, it is 
possible to tune this parameter through the match between 
the measured Rt and the drainage benchmark R HC.

Maximum Residual Oil Saturation, SorM
 This parameter is again best determined from core  ood 
experiments in the laboratory on homogenous unimodal 
intergranular rock. As seen in Example 1, it is also possible 
to tune this parameter through the match between the Rxo log 
and the water  ood benchmark Rinv3 in a hydrocarbon zone. 
In some instances, for water-wet rocks, this parameter for 
vugs may need to be set to unity.

Wettability
 The current implementation of the model requires the 
user to stipulate whether the formation is expected to alter 
wettability to oil-wet. The parameter takes one of two logical 
values: for example, zero implies that the rock remains 
water-wet, and one implies that the pore system changes to 
oil-wet when hydrocarbon saturation exceeds a threshold (in 
our examples set to 50%).

CONCLUSIONS AND RECOMMENDATIONS
 
 The new model addresses the challenges to resistivity-
based saturation evaluation in carbonates for reserves 
estimation. Our homogenization model for microporous 
carbonates explains the perceived enhanced conductivity; 
this model has been validated by core data and is consistent 
with downhole pulsed-neutron logs. Additional inputs, when 
compared to a conventional Archie interpretation, are volume 
fractions of pore-system components and are obtained from 
logs such as NMR, acoustics, and borehole images. Our 
approach also honors phase replacement physics for drainage 
and invasion and accounts for wettability. Saturation within 
the pore system is provided as a result and is expected to aid 
completion decisions on the well. 
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resistivity index; unitless
characteristic length in pore units
Archie porosity exponent; unitless
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connate
grain
invaded or  ushed zone
hydrocarbon (used in benchmarks)
mud  ltrate
intergranular (colloquially macro)
maximum
intragranular (colloquially micro)
comprising intragranular and intergranular pores
residual
true or total
vugs
water or formation water
 ushed or invaded

water-  lled condition or benchmark 0 state
 rst pore system

second pore system
third pore system

c = 
g = 

inv = 
HC = 
mf = 
m =  
M = 

 = 
m = 
r = 
t = 
v = 
w = 

xo = 
0 = 
1 = 
2 = 
3 =
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APPENDIX 1: ALGORITHM 

Preamble
 This appendix provides the detailed work  ow 
and algorithms for the implementation of the Raghu-
Ramakrishnan model for partially saturated carbonate rocks.

Relevant Equations
 For the convenience of the reader, the relevant equations 
from the paper are reproduced here for easy reference.
Conductivity of brine-  lled grain, 0g
 
 (A1)

Computation of Intrinsic intragranular-porosity, 

  (A2)

Effective conductivity of intragranular-intergranular host 
medium, 0 m

 (A3)
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Effective conductivity of rock including vugs, 0

 (A4)

Effective Archie porosity exponent, m

  (A5)

Conductivity of partially saturated grains, g

  (A6)

Conductivity of partially saturated intragranular-
intergranular host medium, m

  (A7)

Total rock conductivity with oil-  lled vugs, 

  (A8)

Total rock conductivity with partially  lled vugs, 

  (A9)

Total undisturbed zone water saturation, Swt

  (A10)

Total  ushed zone water saturation, Sxot

  (A11)

Step 1: Computation of Bruggeman m
a) From volume fractions, compute , Eq. A2. 
b) Evaluate, 0g, using Eq. A1. 
c) Eq. A3 is used for 0 m. 
d) Water-  lled rock, conductivity 0, from Eq. A4. 

Both Eqs. A3 and A4 are implicit for the parameter 
of interest, and suitable solvers must be used to 
determine the desired unknown. 

e) Bruggeman m from Eq. A5.

Step 2: Computation of Drainage Benchmarks
a) Benchmark 1: Water-  lled rock resistivity, R0

b) Benchmark 2: Rock resistivity, RvHC, vugs 
hydrocarbon  lled, rest water  lled is given by Eq. A8 
substituting 0 m for m:

c) Benchmark 3: Rock resistivity, RmHC, vugs 
hydrocarbon  lled, and intergranular pores at Swr and 
intragranular pores water  lled.

Compute 0g as in step 1b.

Use Eq. A7 substituting 0g for g and Swr for Swm. 
Equation is implicit. Solve for m from

Compute effective rock conductivity, mHC, with the 
hydrocarbon-  lled vugs using Eq. A8.

d) Benchmark 4: Rock resistivity, R HC, vugs 
hydrocarbon  lled, and intragranular and intergranular 
pores are at Swr is computed as follows.

Compute intrinsic conductivity of the microporous 
grains using Eq. A6 substituting Swr for Sw .

Use equation A7 substituting Swr for Swm. Equation is 
implicit. Solve for m.

Compute effective rock conductivity, HC, with the 
hydrocarbon-  lled vugs using Eq. A8 from
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Step 3: Compare Benchmark Resistivities and Rt
Case 0: Rt < R0: Error in Rw or Bruggeman m 
 (check pore partitions) or Rt 
 (check the log).

Case 1: R0  Rt < RvHC:  Hydrocarbon in vugs. Rest remain 
 water  lled.

Case 2: RvHC   Rt < RmHC: Hydrocarbon to 100% in vugs. 
 Intergranular has hydrocarbon. 
 Intragranular pores remain water 
  lled.

Case 3: RmHC  Rt < R HC: Hydrocarbon now  lls all vugs 
 and intergranular pores now 
 desaturated to Swr and hydrocarbon 
 entering micropores.

Case 4: R HC < Rt: Error: Swr may need to be reduced.

Step 4: Compute Sw
a) Case 1:
Intrinsic conductivity of the water-  lled host 
(inter+intragranular) medium, 0 m, is already computed 
in step 1c.

Use Eq. A9 to compute Swv substituting 0 m for m and 
recognizing that

Compute connate oil (denoted by subscript c) and water 
saturation in each pore system.

Swt is computed using Eq. A10.

b) Case 2:
Intrinsic conductivity of the water-  lled intragranular 
porous grains is already computed in step 1b.

Use Eq. A8 to compute intrinsic conductivity of the 
host medium, m, given the measured resistivity, Rt, 
and the vug volume fraction, Vv.

Use Eq. A7 substituting 0  for . Equation is implicit. 
Solve for Swm.

Compute connate oil and water saturation in each pore 
system from

Swt is computed using Eq. A10.

c) Case 3:
Intrinsic conductivity of the host medium, m, is 
computed as in step 4b.

Use Eq. A7 substituting Swr for Swm. Equation is implicit. 
Solve for .

Compute intrinsic saturation within the micropores 
using Eq. A6.

Compute connate oil and water saturation in each pore 
system.

Swt is computed using Eq. A10.

Step 5:  Precomputations for Water  ood
a) Compute Sor for each pore system: For 
convenience, we have assumed maximum residual oil 
saturation to be the same in all of the pore systems.
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b) Benchmark 0: Rock resistivity, Rinv0, after 
replacing formation water with mud  ltrate. No change 
in saturation from drainage.

Conductivity of microporous grains is given by Eq. A6

Conductivity of the composite intragranular-
intergranular system, xo m, is from Eq. A7:

Rock conductivity, inv0, including the vugs, is given by 
Eq. A9

c) De  ne wettability state
  If wettability = 1, then 
  If Sw  < 0.5, then oil-wet, 
  Else if Swm < 0.5, then mixed-wet, 
  Else water-wet

Step 6a:  Water  ood Computations in Oil-Wet Case
Computation of water  ood benchmarks:

Benchmark 1, Rinv1: Filtrate imbibition complete into 
vugs, which are now at Sor. Rest unchanged from drainage.

xo m already computed in Step 5b.

Rock conductivity, inv1, including the vugs, is given by 
Eq. A9

Benchmark 2, Rinv2: Filtrate imbibition complete into 
vugs and intergranular pores, which are now at respective 
Sor, intragranular pores unchanged from drainage.

xo  already computed in Step 5b.

Conductivity of the composite intragranular-intergranular 
system, xo m, is (Eq. A7)

Rock conductivity, inv2, including the vugs, is given by 
Eq. A9

Benchmark 3, Rinv3: Rock conductivity when  ltrate 
imbibition is complete, and rock is at Sor.

Conductivity of microporous grains is given by Eq. A6:

Conductivity of the composite intragranular-intergranular 
system, xo m, is given by Eq. A7.

Rock conductivity, inv3, including the vugs, is derived 
from Eq. A9.

Computation of Flushed Zone Saturation:
Case 1: Rinv1 < Rxo: Water enters vugs. Intragranular pores 
and intergranular pores remain unchanged from drainage.

Conductivity of microporous grains, xo , is obtained 
from Eq. A6:

Conductivity of the composite intragranular-intergranular 
system, xo m, is based on Eq. A7 so that

The above equation has been provided in its general 
form, though for the condition of oil-wet, we note that 
Swm = Swr.

Compute saturation in the vugs with Eq. A9 recognizing 
that   .

Compute Sxot with Eq. A11.
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Case 2: Rinv2 < Rxo < Rinv1: Water enters intergranular 
pores. Intragranular pores are unchanged from drainage. 
Vugs are at Sor.

Conductivity of microporous grains, xo , is given by Eq. 
A6.

Conductivity of the composite intragranular-intergranular 
system, xo m, is given by Eq. A9 and recognizing that 

Compute saturation in the intergranular pores, Sxom, with 
Eq. A7.

Compute Sxot with Eq. A11. 

Case 3: Rinv3 < Rxo < Rinv2: Water enters intragranular 
pores. Intergranular pores and vugs at respective Sor.

Conductivity of the composite intragranular-intergranular 
system, xo m, is based on Eq. A9 and recognizing that 
                , we have

Conductivity of microporous grains, xo , is based on 
Eq. A7:

Compute saturation in the intragranular pores, Sxo , with 
Eq. A6.

Compute Sxot with Eq. A11. 

Towards a Petrophysically Consistent Implementation of Archie’s Equation for Heterogeneous Carbonate Rocks

Step 6b:  Water  ood Computations in Mixed-Wet Case
Computation of Water  ood Benchmarks:

Benchmark 1, Rinv1: Filtrate invasion is complete into 
intragranular pores down to Sor. Rest are unchanged 
from drainage. Conductivity of microporous grains is 
given by Eq. A6:

Conductivity of the composite intragranular-
intergranular system, xo m, is given by Eq. A7:

Rock conductivity, inv1, including the vugs, is given by 
Eq. A9

The above equation has been provided in its general 
form, though for the condition of mixed-wet, we note 
that Swv = 0. Hence, Eq. A8 may be used for inv1.

Benchmark 2, Rinv2: Filtrate invasion is complete into 
intragranular and vugs, which are now at respective Sor; 
intergranular pores unchanged from drainage.

xo  and xo m are computed as illustrated in the earlier 
step.

Rock conductivity, inv2, including the vugs, is given by 
Eq. A9

Benchmark 3, Rinv3: Rock conductivity when  ltrate 
invasion is complete, and rock is at Sor. Conductivity 
of microporous grains, xo , already computed in earlier 
step. Conductivity of the composite intragranular-
intergranular system, xo m, is computed using Eq. A7.
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Rock conductivity, inv3, including the vugs, is given by 
Eq. A9.

Computation of Flushed Zone Saturation:
Case 1: Rinv1 < Rxo: Water enters intragranular pores. 
Vugs and intergranular pores unchanged from drainage.

Conductivity of the composite intragranular-
intergranular system, xo m, is from Eq. A8.

Conductivity of the grains, xo , is from Eq. A7. Then

Compute saturation from

Compute Sxot (Eq. A11).

Case 2: Rinv2 < Rxo < Rinv1: Water entering in vugs. 
Intragranular pores at Sor. Intergranular pores unchanged 
from drainage.

Conductivity of microporous grains, xo , is given by 
Eq. A6.

Conductivity of the composite intragranular-
intergranular system, xo m, is given by Eq. A7

Compute saturation in the vugs, Sxov, with Eq. A9 
recognizing that

Compute Sxot (Eq. A11). 

Case 3: Rinv3 < Rxo < Rinv2: Water entering in intergranular 
pores. Intragranular pores and vugs at respective Sor.

Conductivity of the composite intragranular-
intergranular system, xo m, is given by Eq. A9 
recognizing that

Conductivity of microporous grains, xo , is given by 
Eq. A6.

Compute saturation in the intergranular pores, Sxom, 
with Eq. A7.

Compute Sxot with Eq. A11.

Step 6c:  Water  ood Computations in Water-Wet Case
Computation of Water  ood Benchmarks:

Benchmark 1, Rinv1: Filtrate imbibition complete into 
intragranular pores which are now at residual oil. Rest 
are unchanged from drainage

Conductivity of microporous grains is given by Eq. A6

Conductivity of the composite intragranular-
intergranular system, xo m, is from Eq. A7:
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Rock conductivity, inv1, including the vugs, is solved 
from Eq. A9, i.e.,

Benchmark 2, Rinv2: Filtrate imbibition complete into 
intragranular and intergranular pores, which are now at 
respective Sor; vugs unchanged from drainage.

xo  already computed in earlier step.

Conductivity of the composite intragranular-
intergranular system, xo m, is given by Eq. A7 so that

Rock conductivity, inv2, including the vugs, is (Eq. A9)

Benchmark 3, Rinv3: Rock conductivity when  ltrate 
imbibition is complete, and rock is at Sor.

Conductivity of microporous grains and the host, i.e., 
xo  and xo m, are obtained as in the previous step.

Rock conductivity, inv3, including the vugs, is solved 
from (Eq. A9)

Computation of Flushed Zone Saturation:

Case 1: Rinv1 < Rxo: Water enters intragranular pores. 
Vugs and intergranular pores are unchanged from 
drainage. Conductivity of the composite intragranular-
intergranular system, xo m, is given by Eq. A9 
recognizing that                  Therefore,

Conductivity of the grains, xo , is (Eq. A7):

Compute saturation in the intragranular pores from 
Eq. A6:

Compute Sxot using Eq. A11.

Case 2: Rinv2 < Rxo < Rinv1: Water enters in intergranular 
pores. Intragranular pores are at Sor. Vugs unchanged 
from drainage. Conductivity of microporous grains, 

xo , is given by Eq. A6 so that

Conductivity of the composite intragranular-
intergranular system, xo m, is given by Eq. A9. 
Recognizing that

Compute saturation in the intergranular pores, Sxom, 
with Eq. A7.

Compute Sxot with Eq. A11. 

Case 3: Rinv3 < Rxo < Rinv2: Water enters vugs. 
Intragranular pores and intergranular pores are at 
respective Sor. Conductivity of grains, xo , is computed 
as in earlier step. Conductivity of the composite 
intragranular-intergranular system, xo m, is given by 
Eq. A7 so that
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Revisiting the Concept of Wettability for Organic-Rich Tight Rocks: Application in 
Formation Damage–Water Blockage

Sanchay Mukherjee1*, Son Thai Dang1, Chandra Rai1, and Carl Sondergeld1

      
ABSTRACT

 Wettability is an important petrophysical property, which 
governs irreducible  uid saturations, relative permeability, 
and  uid invasion. Unlike conventional reservoirs, which 
have relatively uniform pore-surface properties, the concept 
of wettability is questionable in organic-rich tight reservoirs. 
These rocks do not only have a nanoporous system, but also 
possess multiple pore types with different interfacial af  nities. 
Previous studies have shown that the unconventional 
reservoirs consist of three major pore types: inorganic pores 
(assumed to be water-wet), organic pores (assumed to be 
oil-wet, controlled by organic matter and thermal maturity), 
and mixed-wet pores (controlled by organic-inorganic 
distribution) (Curtis et al., 2012). 
 The current study revisits the concept of pore-type 
partitioning in tight rocks. We propose and demonstrate a new 
work  ow to evaluate pore partitioning using four companion 
samples from Wolfcamp B Shale. First, all the specimens were 
vacuum dried at 100°C for 6 days to remove the free  uids 
until the weight stabilized. Total porosity was estimated as 
the sum of irreducible liquid volume (using nuclear magnetic 
resonance (NMR)) and gas-  lled volume (using a high-
pressure helium pycnometer). Two of the specimens were 
saturated with a single  uid (either dodecane or 2.5 wt% KCl 
brine)—  rst, via imbibition for 5 days, followed by step 
pressurization (up to 7,000 psi) to achieve 100% saturation. 
The imbibition step was done hydrostatically with  uid 
injected into the samples from all directions. The other 
companion specimens were subjected to multiple injection 
cycles—starting with imbibition, then counter imbibition, and 
 nally, step pressurization with the replacing phase. During 

this process, we used brine-then-dodecane and dodecane-
then-brine as the injection  uid sequences. The counter-
imbibition process refers to the imbibition of the samples 

INTRODUCTION

 Wettability determines the preferential contact between 
the reservoir rock and  uids  lling the pores. Wettability 
controls some of the petrophysical characteristics of the 

by one liquid followed by another liquid. All four samples 
were continuously monitored by both gravimetric and NMR 
measurements until equilibration. Relative fractions of both 
replaced and replacing phases were calculated from sample 
weights and pore-  uid volumes.
 The new approach classi  es the connected pore network 
into three categories—oil-wet, water-wet, and mixed-wet, 
respectively, occupying 50, 15, and 35% of total movable 
pore volume in the Wolfcamp B. Mixed-wet pore is de  ned 
as the pore fraction, in which both oil and water can replace 
air under capillary suction. Using a conventional NMR 
wettability index, based on the difference between brine 
and oil intakes (Looyestijn and Hofman, 2006), this sample 
would appear to be oil-wet. However, this is a misleading 
interpretation. It is important to emphasize that mixed-wet 
pores are not equivalent to neutral-wet systems. We observe 
that the mixed-wet pores prefer brine over oil. During the 
counter-imbibition step, the samples initially imbibed with 
dodecane tend to intake brine while replacing dodecane, 
whereas the samples initially imbibed with brine and then 
counter imbibed with dodecane do not show a signi  cant 
change in  uid concentrations. Instead, it required 1,500 psi 
of injection pressure for dodecane to reenter the pore system.
 During well completion, water blockage will likely 
happen in this formation due to the capillary preference of 
mixed-wet pores. This formation damage can be reduced by 
the addition of surfactants into fracturing  uids. Moreover, 
the effect of water blockage is expected to reduce with more 
than 1,500 psi of drawdown.  Thus, the work  ow is promising 
to fully describe the pore network in tight formations in which 
pore-type partitioning is a more reasonable concept than 
wettability.

reservoir like relative permeability, residual  uid saturation, 
and capillary pressure, thus affecting the primary and 
secondary production from a well (Abdallah et al., 2007). 
 The Amott Harvey imbibition test, Bureau of Mines 
(USBM) test (Donaldson et al., 1969), and contact angle 
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measurements are some common techniques to measure 
wettability in conventional reservoirs. The Amott Harvey 
method combines spontaneous imbibition and forced 
displacement, and a sample’s wettability is determined 
based on the difference between brine and oil saturation for 
a zero-capillary pressure.
 The USBM method uses a centrifuge (representing 
capillary pressure) to spin the rock core sample and results 
in forced imbibition and drainage. Using contact angle 
measurements, the wetting characteristics of the pores are 
determined using the contact angle between the  uid and 
solid surface; the surface can be water-wet if the angle is 
less than 90°, oil-wet if greater than 90°, and neutral-wet if 
equal to 90° (Fanchi, 2002). However, in tight rocks, due to 
low permeabilities and small pore sizes, these conventional 
techniques of measuring wettability fail. Desaturation 
techniques, such as centrifuge and  uid displacement, are 
unable to yield higher differential pressure and achieve 
uniform  uid distribution due to the small pores and 
fractional wettability in them, thus failing their purpose in 
tight rocks.
 Some recent techniques to evaluate wettability in 
tight rocks are spontaneous imbibition method (Lan et al., 
2015; Akbarabadi et al., 2014), pore-space imaging method 
(Akbarabadi et al., 2017), and NMR-based methods (Sharma 
et al., 2007; Odusina et al., 2011; Tinni et al., 2017). Most 
of these studies con  rm the presence of three types of pores: 
water-wet pores (inorganic pores), oil-wet pores (organic 
pores), and mixed-wet pores (see Fig. 1) (Odusina et al., 2011; 
Deglint et al., 2017). However, the concept of wettability is 
questionable in organic-rich tight reservoirs since the surface 
properties throughout the whole pore system are not uniform. 
The NMR-based method calculates the wettability index 
based on the interconnectivity between these three kinds of 
pores (Odusina et al., 2011). Along with wettability, porosity, 
permeability, and water saturation can also be measured from 
relaxation times from NMR measurements. These relaxation 
times of  uids in rocks vary with the interaction between pore 
 uid and matrix grains and yield the separation of effects 

of wetting and nonwetting  uids. The wettability index 
calculated based on the difference of spontaneous intakes 
of brine vs. oil can be masked by the volumetric difference 
between oil-wet and water-wet pores, whereas mixed-wet 
pores govern partial  ows. 
 This study proposes a three-step work  ow to characterize 
the pore types in tight rocks into three categories—oil-
wet, water-wet, and mixed-wet pores—and quantify their 
relative proportions. The three steps in this work  ow include 

spontaneous imbibition, then counter imbibition, and  nally, 
step pressurization of replacing  uids.
 

METHODOLOGY

 Four companion specimens (namely A, B, C, and D) 
from a single depth (within a 2-in. interval) of the Wolfcamp 
B Formation were used for this study. Petrophysical 
properties of the sample include Fourier transform infrared 
spectroscopy (FTIR)-mineralogy (Sondergeld and Rai, 
1993; Ballard, 2007), LECO total organic carbon (TOC), 
porosity, and thermal maturity (Hawk) and are reported in 
Table 1. Total porosity was measured using the combination 
of helium high-pressure pycnometer (HPP) and NMR on 
plug specimens. HHP measures gas-  lled porosity, while 
NMR captures liquid-  lled porosity. These specimens 
were evaluated under handheld X-ray  uorescence (XRF) 
measurements and con  rm minimal compositional 
heterogeneity (Appendix 1, Table A1.1).
 All four specimens were dried at 100°C under vacuum 
for 6 days until the weight stabilized. After drying, the 
total porosity was remeasured as the sum of irreducible 
liquid volume (using NMR) and gas-  lled volume (using 
HPP). First, Specimen A imbibed 2.5 wt% KCl brine, and 
Specimen B imbibed dodecane for 5 days, followed by step 
pressurization up to 7,000 psi, with the respective injection 
 uids to achieve 100% saturation (Fig. 2). The imbibition 

step was done hydrostatically with  uid injecting into the 
samples from all directions. Specimens C and D were 

Fig. 1—SEM image of a shale sample (Marcellus Shale) showing the 
three kinds of pores: organic, inorganic, and mixed-wet pores. (Curtis 
et al., 2011)
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introduced to imbibition and counter imbibition, followed 
by step pressurization with the replacing phase (Fig. 3). 
For Specimen C, the sequence followed for imbibition 
and counter imbibition was brine-dodecane-dodecane 
pressurization (Sequence I), and for Specimen D, the 
sequence carried out for imbibition and counter imbibition 
was dodecane-brine-brine pressurization (Sequence II). 
The counter-imbibition process refers to the imbibition 
of the samples by one liquid followed by another liquid, 
without the implication of injection direction. All samples 
were continuously monitored by both gravimetric and NMR 
measurements until equilibrium. These measurements 
allowed us to calculate the relative fractions of both the 
replaced and replacing phases.
 NMR data, including T2 relaxation distributions, 
were acquired at the frequency of 12 MHz, using Oxford 
GeoSpec+ spectrometers and Green Imaging acquisition and 
processing software (Fig. 4). The magnet temperature was 
set at 35°C throughout the experiments. The echo spacing, 
of 114 s, was chosen to capture fast relaxation components 
in the shale samples (including  uids in small pores and 
heavy hydrocarbon components) (Dang et al., 2019). All 
NMR responses in this work were collected with a signal-to-
noise ratio (SNR), between 100 to 150.

Table 1—Petrophysical Properties of Wolfcamp B Samples

Fig. 2—Work  ow for single-phase injection, either with 2.5 wt% KCl 
brine or dodecane. Two companion specimens were imbibed, counter 
imbibed, then followed by step pressurization with the same  uid.

Fig. 3—Work  ow for multiphase imbibition. The samples were imbibed 
and counter imbibed with different  uids (brine-then-dodecane and 
dodecane-then-brine), followed by step pressurization by the same  uid 
used in the counter-imbibition stage.

Fig. 4—An example of an acquired T2 NMR distribution showing the 
incremental volume (p.u.) as a function of  uid relaxation time (ms). In 
the context of tight source rock, the peak at a faster relaxation time 
represents  uid in small pores (generally, brine associating with clay 
pores), and the peak at higher relaxation times refers to oil (dodecane) 
signals. 
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RESULTS AND DISCUSSIONS

 Fluid  ow in a rock is impacted by different pore types 
and their distribution within the rock matrix. When there 
exists more than one  uid in the rock, the  ow of one  uid is 
dependent on the other; the  uids might  ow from one type 
of pore to another based on the capillary pressure barriers of 
the system (Tinni et al., 2017). 
 Figures 5a and 5b show the T2 NMR response for the 
Samples A and B when only single-phase  uid is injected into 
the rock. In both cases, we observe that even after vacuum 
drying the samples at 100°C until weight stabilization, a 
fraction of irreducible  uid remains in the rock. At the end 
of the pressurization step, the sample achieves a 100% 
saturation of 10.5 p.u. (con  rmed by total porosity measured 
by HPP and NMR). In Fig. 5a, the NMR responses for the 
dry state, brine imbibition, and brine step pressurization (up 
to 7,000 psi) are also shown. The behavior signi  es that brine 
enters easily into water-wet pores (in the fast relaxation area, 
0.1 to 3 ms), which generally is associated with small clay 
pores; later, brine was forced into oil-wet pores (in the slow 
relaxation area), which either have large pore size or small 
surface relaxivity with respect to brine. Figure 5b shows 
the NMR responses for the following: the dry state, 
dodecane imbibition, and dodecane step pressurization 
(up to 7,000 psi). Interpreting the curves tells us that 
dodecane tends to get in the slow relaxation region of the 
distribution, which represents the large or organic oil-wet 
pores (1 to 10 ms). Only after applying a higher pressure 
(exceeding the capillary barrier) does dodecane enter the small 
water-wet pores (relaxation time of 0.1 to 1 ms). 

Fig. 5a—The NMR responses for the dry state, brine-imbibed state, 
and brine-forced state at different pressures. Brine enters easily into 
water-wet and mixed-wet pores (fast relaxation time). With increasing 
pressure, brine enters oil-wet pores (slow relaxation time). After  uid 
pressurization, cumulative NMR porosity matches with total porosity 
measured by HPP and NMR on the dried specimen.

Fig. 5b—The NMR responses for the dry state, dodecane imbibition, 
and dodecane step pressurization (up to 7,000 psi) indicate that 
dodecane tends to get in the slow relaxation region of the distribution, 
which represents the large or organic oil-wet pores and that only on 
the application of higher pressures is the dodecane able to enter the 
small pores or water-wet pores of the rock. After  uid pressurization, the 
cumulative NMR porosity matches with total porosity measured by HPP 
and NMR on the dried specimen.

 For the multiphase injection step, the samples were 
vacuum dried until the weights stabilized. Figures 6a and 
6b show the T2 NMR responses for Samples C and D 
when multiple  uids were injected. In Fig. 6a, the NMR 
responses for the dry state, brine imbibition after 5 days, 
followed by dodecane imbibition for 5 days are shown. The 
brine imbibition curve shows the brine intake of the rock, 
followed by brine displacement during dodecane imbibition. 
We observe that after brine imbibition, little dodecane 
entered the pore and had no brine production. However, 
in another case, Fig. 6b, where dodecane was imbibed  rst 
and then brine, the curves show a different behavior of 
brine displacing the dodecane over 5 days. This behavior 
is indicated by the increase in peak amplitudes in the fast 
relaxation region (brine signal) and a decrease in the slow 
relaxation region (dodecane signal). This preference of the 
pores for brine over oil can thus cause water blockage during 
 eld operations.

 After the imbibition step, we pressure saturated the 
samples in both the sequences with the counter-imbibition 
 uid (dodecane for Sequence I and brine for Sequence II). 

Figures 7a and 7b show the T2 NMR responses for the 
Samples C and D for the pressurization steps. In Fig. 7a, the 
NMR responses for the dry state, brine imbibition after 5 days, 
dodecane imbibition after 5 days, and pressure saturation 
steps with dodecane (up to 7,000 psi) are shown. The curves 
indicate that after dodecane imbibition, higher pressure is 
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required to push the oil into the pores. This is represented 
by an increase in peaks in the slow relaxation region of the 
distribution and a decrease in the fast relaxation regions. 
Thus, this shows that with an increase in pressure, not only 
does oil enter into the pore system, but it also forces brine 
out of the pores. In Fig. 7b, NMR responses for the dry 
state, dodecane imbibition after 5 days, brine imbibition 

Fig. 6a—(Sequence I) The NMR responses for the dry state, brine 
imbibition after 5 days, and dodecane imbibition after 5 days show the 
brine intake of the rock, followed by brine displacement during dodecane 
imbibition. We observe that after brine imbibition not much dodecane 
can spontaneously enter the pore system. The blue color represents 
brine intake, and the green color represents dodecane intake.

after 5 days, and pressure saturation steps with brine (up to 
7,000 psi) are shown. The same peaks in the slow relaxation 
region and increasing peaks in the fast relaxation region 
show that on pressurizing the sample with brine, dodecane 
is not being pushed out; however, brine is entering the 
sample through small pores or water-wet pores.

Fig. 6b—(Sequence II) The NMR responses for the dry state, dodecane 
imbibition, and counter imbibition by brine. The increase in peak 
amplitudes in the fast relaxation regions (brine signal) and the decrease 
in the slow relaxation region (dodecane signal) indicate the preference 
of the pores for brine over oil. This behavior in counter imbibition is 
opposite to Sequence I. The blue color represents brine intake, and the 
green color represents dodecane intake.

Fig. 7a—(Sequence I–continued) The NMR responses are shown for 
the dry state, brine imbibition after 5 days, dodecane imbibition after 
5 days, and  nally pressure saturation steps with dodecane (up to 
7,000 psi). The increasing peaks in the slow relaxation region of the 
distribution and decreasing peaks in the fast relaxation regions show 
that by increasing the pressure, we are not only able to enter oil into the 
system, but also push out brine from the pores. 

Fig. 7b—(Sequence II–continued) The NMR responses for the dry 
state, dodecane imbibition after 5 days, brine imbibition after 5 days, 
and pressure saturation steps with brine (up to 7,000 psi) are shown. 
The same peaks in the slow relaxation region and increasing peaks in 
the fast relaxation region indicate that although dodecane is not being 
pushed out, brine is entering the sample through small pores or water-
wet pores.
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 All these experimental steps—drying, imbibition, 
counter imbibition, and pressurization along with 
both gravimetric (weight) and volumetric (NMR) 
measurements—were used to precisely calculate the 
concentration of replaced and replacing  uids.
 Figure 8 shows the porosity variation as a function 
of time and steps followed for Sequence II (dodecane 
imbibition-brine, followed by brine pressurization). The 
pressure pro  le is also included in the same plot. As 
received, sample porosity was 5 p.u. After the drying stage, 
the porosity reduces to 3 p.u., but does not completely 
disappear due to the presence of irreducible  uid saturation 
and some  uids in the unconnected pores. The curves 
represent the initial imbibition of dodecane, followed by 
counter imbibition of brine and pressurization by brine. 
During counter imbibition, initially, brine pushes dodecane 
out from the pores, but after pressurization, it does not 
displace a signi  cant quantity of dodecane.
 Figure 9 shows the porosity variation as a function of 
time and steps followed for Sequence I (brine imbibition-
dodecane; imbibition-dodecane; pressurization). Even after 
vacuum drying the samples, irreducible  uid is still observed. 
The sample is then brine imbibed and counter imbibed with 
dodecane. During counter imbibition and at lower pressures 
of saturation by dodecane, a small increase of dodecane 
volume entering the rock is observed, as well as a small 
volume of the brine expelled from the matrix. At or above 

Fig. 8—Pore space occupied by brine and dodecane as a function of time during dodecane imbibition, followed by brine imbibition and pressurization. 
During the imbibition of brine after dodecane imbibition, a signi  cant quantity of dodecane is pushed out from the pores by brine, which reduces over 
time, and on pressurization, not much dodecane is pushed out.

a pressure of 1,500 psi, dodecane continues to  ow through 
the pores without displacing any more brine, implying the 
oil phase regains continuity. This threshold pressure can be 
seen as the capillary pressure required to make the oil phase 
continuous and thus can help in determining the drawdown 
during production on a  eld scale. We can also quantify the 
type of pores present in the rock system using Eqs. 1, 2, and 3:

           (1)

      (2)

  (3) 

 We propose the following model for the Wolfcamp 
B rock type system (Fig. 10a). The rock consists of four 
types of pores: oil-wet (black), water-wet (gray), mixed-
wet (fractional-wet), and unconnected pores (as shown by 
the yellow color). Sequence 1 is shown in Fig. 10b, and it 
indicates that dodecane enters the oil-wet pores, and at the 
same time, it enters the mixed-wet pores during the  rst step 
of dodecane imbibition. On counter imbibition by brine, 
brine replaces the oil in mixed-wet pores and also accesses 
the water-wet pores. At the end of this step, the  uid 
saturation approaches closely to 100%.
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Fig. 9—Pore space occupied by brine and dodecane as a function of time during brine imbibition, followed by dodecane imbibition and pressurization. 
During counter imbibition and at lower pressures of saturation by dodecane, a small increase of dodecane volume entering the rock is recorded, as 
well as a small volume of the brine displaced from the matrix. At or above a pressure of 1,500 psi, dodecane continues to  ow through the pores 
without displacing any more brine, implying the oil phase regains continuity. 

 In Sequence II (Fig. 10c), brine only occupies the water-
wet and mixed-wet pores during the initial imbibition of 
brine in the rock. During the next step of counter imbibition 
by dodecane, the mixed-wet pores still prefer brine over oil 
as it blocks the access of dodecane in the oil-wet pores. Only 
after pressure saturating the sample at a pressure higher 
than 1,500 psi, more dodecane enters the oil-wet pores. 
This model helps to quantify the oil-wet, water-wet, and 
mixed-wet pores in the rock using Eqs. 1, 2, and 3, and the 
calculated values are shown in Table 2:

Table 2— Percentage of Oil-Wet, Water-Wet, and Mixed-Wet 
Pores in Wolfcamp B Samples

FIELD IMPLICATIONS

 Hydraulic fracturing is a necessary stimulation process 
for tight reservoirs, in which the usage of fracturing  uid 
can affect formation performance. For the Wolfcamp B 
samples used in this study, during well completion, the 
water blockage is likely to happen due to water displacing 
oil residing in oil-wet pores. Initially, this might be favorable 
for the operator to boost the initial production rate; however, 
the water blockage in the later stage might hinder long-term 
production. The following solutions might help solve the 
problem of water blockage:

Limiting the water invasion below the threshold 
before losing oil-phase continuity. This can be done 
by limiting soaking time or using available surfactants 
to reduce the interfacial tension during the fracturing 
 uid injection process (Hirasaki et al., 2008). The 

drawback of this process is that with the use of 
surfactants in fracturing  uid, the initial production 
rate might be reduced.
Another solution can be to create a huge drawdown of 
1,500 psi (for this formation) to regain the continuity 
of the oil phase.
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Fig. 10—Proposed model for the Wolfcamp B rock pore system. (a) 
The rock consists of four types of pores: oil-wet (black), water-wet 
(gray), mixed-wet (fractional-wet), and unconnected pores (yellow); (b) 
Sequence I shows dodecane entrance into the oil-wet pores and the 
mixed-wet pores during the  rst step of dodecane imbibition. On counter 
imbibition, brine replaces the oil in mixed-wet pores and also accesses 
the water-wet pores; (c) In Sequence II, brine only occupies the water-
wet and mixed-wet pores during the initial imbibition of brine. During 
counter imbibition by dodecane, the mixed-wet pores prefer brine over 
oil, thus blocking dodecane from entering oil-wet pores. At a pressure 
higher than 1,500 psi, we are able to force more dodecane into the oil-
wet pores.

CONCLUSIONS

 The approach followed in this paper classi  es the 
connected pore network in Wolfcamp B Formation into three 
categories: oil-wet, water-wet, and mixed-wet, respectively, 
occupying 50, 15, and 35% of the total movable pore 
volume. Mixed-wet pores represent a type of fractional-wet 
pores in which the smaller pores are water-wet and larger 
pores are oil-wet and that both oil and water can replace air 
under capillary suction forces. Using a conventional NMR 
wettability index, the sample might appear to be oil-wet 

based on the difference between the brine and oil intakes. 
However, this is a misleading interpretation. We observe 
that the mixed-wet pores prefer brine over oil. During the 
counter-imbibition step, the samples initially imbibed with 
dodecane tend to intake brine while displacing dodecane, 
whereas the samples initially imbibed with brine and then 
counter imbibed with dodecane do not show a signi  cant 
change in  uid concentrations. Instead, it required 1,500 psi 
of injection pressure to reinject dodecane back into the pore 
system. Thus, only observing the contrast between oil and 
brine intake in tight rocks might not be suf  cient to interpret 
the pore-system partitioning. 
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Prediction of Sonic Wave Transit Times From Drilling Parameters While Horizontal 
Drilling in Carbonate Rocks Using Neural Networks

Ahmad Gowida1 and Salaheldin Elkatatny1*

      

ABSTRACT

 Sonic logging data are usually used to determine 
formation type, porosity, saturating  uids, and dynamic 
elastic parameters. Sonic logging data—compressional 
(P-wave) and shear (S-wave) transit times—can be 
obtained using acoustic logging tools. Sonic data are not 
always available for all the drilled wells aside from the 
sonic logging tools that are usually run into the well after 
the formation has been drilled.
 The main objective of this paper is to develop a 
synthetic well-log generator tool to predict the P-wave and 
S-wave transit times ( tcomp and tshear, respectively) while 
drilling using a neural networks technique. To build the 
arti  cial neural network models,  eld data (1,421 points) 
have been collected from a horizontal well representing 
a carbonate formation within a  eld in the Middle East 

INTRODUCTION

 Identifying the geomechanical properties of the 
formations is considered a key factor for formation 
evaluation and rock characterization processes (Darling, 
2005). Estimating these parameters with high accuracy 
can help effectively save time, money, and risks. Rock 
strength parameters are considered essential for optimizing 
drilling operation ef  ciency and minimizing the associated 
risks due to a better understanding of the nature of the 
drilled formations (Nes et al., 2005). These geomechanical 
properties mainly include Poisson’s ratio and Young’s 
modulus. These parameters are usually used for developing 
geomechanical models, which are considered important 
tools for representing the in-situ stress state and the elastic 
behavior of the subterranean formations (Gatens et al., 1990). 
Thereafter, many problems during the drilling process can 
be avoided, like pipe sticking and kicks. 
 Static elastic parameters can be estimated accurately 
from laboratory measurements on retrieved core samples 
representing the in-situ stress-state condition of the 

region that included mechanical drilling parameters 
and the corresponding well-log data ( tcomp and tshear). 
Another set of data (417 unseen data from the same  eld) 
was used to assess the robustness of these models for 
prediction purposes.
 The results showed a signi  cant agreement between 
the predicted and measured values of tcomp and tshear 
indicated by correlation coef  cient (R) of 0.94 and 0.93 
with an average absolute percentage error (AAPE) of 1.18 
and 0.87% for tcomp and tshear predictions, respectively. 
Besides, the validation process manifested the capability 
of the developed models to predict tcomp and tshear with 
an AAPE of 1.87 and 1.30% for the tcomp and tshear 
models, respectively. 
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formations under study (Tutuncu and Sharma, 1992).  
However, this approach is considered very costly and an 
ineffective use of time. Therefore, the dynamic elastic 
parameters are usually estimated instead using petrophysical 
well-log data, such as gamma ray, neutron porosity, and 
formation bulk density (Najibi et al., 2015). The core data 
can then be used to calibrate the dynamic geomechanical 
data (Ahmed and Meehan, 2016). Dynamic Young’s modulus 
and Poisson’s ratio can be calculated using the well-log data, 
namely compressional (P-wave), shear (S-wave) transit 
times, and formation bulk density ( tcomp, tshear, and bulk 
density (RHOB), respectively) (Fjar et al., 2008) using 
Eqs. 1 and 2:

 (1)

 (2)
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where dynamic is the dynamic Poisson’s ratio, Vs is the shear-
wave velocity in km/s, Vp is the compressional-wave velocity 
in km/s, Edynamic is the dynamic Young’s modulus in GPa, and 
 is the formation bulk density in g/cm3.

 P-wave and S-wave velocities are usually measured in 
the  eld using a sonic logging tool. This tool provides the 
interval transit time of the formation denoted by tcomp for 
the compressional-wave velocity and tshear for the shear-
wave velocity. These velocities are greatly dependent on the 
formation type and the saturating  uid; thereafter, these data 
can be used for determining the formation type, porosity, 
and the  uid  lling the pores (Bassiouni, 1994). Sonic 
data can be obtained using logging-while-drilling (LWD) 
tools; however, sonic tools are not usually integrated into 
such technique while drilling, especially in development 
wells. This is because of several economic and operational 
limitations due to the harsh drilling environment. Sonic data 
can also be obtained using wireline-logging tools, which are 
usually run after the formations have been drilled (Wraight 
et al., 1989; Bassiouni, 1994). Therefore, these data are 
not always available during the drilling operation, which 
increases the potential for several problems due to the lack 
of such data required for identifying the drilled formations.
 Several trials have been reported in the literature for 
determining the velocities of the P-wave and S-wave. 
Carroll (1969) developed a correlation to estimate S-wave 
velocity from P-wave velocity for rocks with Poisson’s ratio 
ranging from 0.15 to 0.35 and porosities between 0.1 to 0.3. 
Castagna et al. (1985) presented a correlation for estimating 
S-wave velocity as a function of the velocity of a P-wave via 
different correlations depending on the type of formations. 
Furthermore, Brocher (2005) also introduced a correlation 
to calculate S-wave velocity from P-wave velocity within 
the range of 1.5 to 8.5 km/s. Moreover, it was found that 
S-wave velocity can be predicted from logging data (RHOB, 
neutron porosity, and P-wave velocity) using arti  cial 
intelligence and regression-based correlations (Eskandari et 
al., 2004). Besides, P-wave can be predicted from logging 
data, including resistivity, porosity, and gamma ray, using 
regression approaches (de Augusto and Martins, 2009). 
Recently, several studies introduced the implementation 
of different arti  cial intelligence techniques for estimating 
sonic transit times from well-log data and seismic data 
(Maleki et al., 2014; Hadi and Nygaard, 2018; Elkatatny et 
al., 2018; Muqtadir et al., 2019).
 Based on the literature, most of the trials for determining 
the sonic waves’ velocities depended on the availability 
of other logging data; however, these logging data are not 

always available during the drilling operation due to the 
harsh drilling environment (Jackson and Heysse, 1994). 
Therefore, synthetic well-log generation using arti  cial 
intelligence methods has been presented as an effective tool 
for providing a complete well-log data pro  le when these 
data are not available or even for those sites where the well-
log data are partially nonexistent (Zhang et al., 2018). 
 The nature of the subterranean formations signi  cantly 
affects the drilling performance and, in turn, the parameters 
controlling the drilling operation (Bourgoyne et al., 1986). 
These parameters, including torque (T), weight on bit 
(WOB), mud pumping rate in gallon per minute (GPM), 
rotating speed in revolution per minute (RPM), drilling  uid 
pumping pressure (SPP), and rate of penetration (ROP), are 
usually adjusted based on the nature of the drilled formations 
(Mensa-Wilmot et al., 1999). Gowida et al. (2019) showed 
that these drilling parameters could be used for predicting 
the formation bulk density while drilling using arti  cial 
intelligence methods. Therefore, the objective of this study 
is to develop new models using neural networks (ANN) for 
predicting P-wave and S-wave velocities while drilling using 
the drilling parameters as inputs for feeding the models. 
Thereafter, the dynamic elastic parameters can be estimated 
using the predicted synthetic well-log data via Eqs. 1 and 2.   

Arti  cial Neural Network (ANN)
 Recently, the ANN technique has been implemented in 
many applications in the oil and gas industry (Ashena and 
Thonhauser, 2015). Its structure is inspired by the biological 
neural systems of human brains and imitates the way of 
processing the signals to produce the output (Angelini and 
Ludovici, 2009). The outstanding performance of ANN in 
different applications showed its great ability to outperform 
the conventional regression method and simulate nonlinear 
systems and complex problems (Razi and Naderi, 2013). 
The primary units for the neural network system are called 
“neurons,” which are used for processing and training 
the network. The neural network is composed of a group 
of connections to link between the inputs, neurons, and 
the output. These connections are weighted based on 
the nature of the problem (Rao and Ramamurti, 1993). 
The backpropagation algorithm is considered one of the 
recommended algorithms for training the networks (Yagiz 
et al., 2012). There are three main types of layers forming 
the network: input, hidden, and output layers. Feeding the 
input layer with the input data, the data passes through 
the processing neurons in the hidden layer(s), thereafter 
passing through the output layer, which eventually produces 



484 PETROPHYSICS October 2020

the predicted output (Lippman, 1987). Different transfer 
functions are assigned to the hidden and output layers to 
link between the layers. Optimizing the number of neurons 
is essential to avoid over/under  tting and the memorization 
issue (Rao and Ramamurti, 1993). A simpli  ed schematic 
diagram typically mimics the developed neural network, 
which is depicted in the following section.

METHODOLOGY 

Data Description
 A  eld data set of 1,421 points is used for developing the 
proposed models, representing a horizontal well in the Middle 
East region. It includes drilling parameter measurements (T, 
ROP, RPM, SPP, WOB, and GPM) and the corresponding 
well-log data, namely compressional (P-wave) and shear 
(S-wave) transit times ( tcomp and tshear). These drilling 
parameters are usually adjusted based on the type of the 
drilled formation and are always available during the 
drilling operation. The drilling parameters used in this model 
are surface drilling information, and their measurements 
respond to the nature of the downhole formations at the bit. 
These data have been measured using highly precise sensors 
to provide actual measurements with high accuracy. The 
obtained data have passed through a step of corrections in 
order to remove noise and unreasonable readings from the 
data to be more reliable and representative. For building 
the proposed models, these drilling parameters are used as 
inputs for the network to predict tcomp and tshear as outputs. 

Data Processing
 The obtained data were  ltered from any noise and 
unreasonable values like negative and 999 values, especially 

found in the log data. The data were then cleaned from 
outliers that showed an obvious deviation from the normal 
trends of the data. These outliers were removed using a 
specially developed MATLAB program based on a box-and-
whisker-plot technique, in which the top whisker represents 
the upper limit of the data, and the bottom whisker represents 
the lower limit of the data. Any value beyond these limits was 
considered an outlier and removed (Dawson, 2011). These 
limits were determined based on the statistical analysis of the 
data listed in Table 1.  Statistical analysis was also performed 
on the  ltered data, which showed good distribution of the 
data and coverage of wide ranges of the different input and 
output parameters, as listed in Table 1. Figure 1 shows a 
graphical presentation of the input data used for developing 
the proposed models along the selected depth. 

Relative Importance Between tcomp and tshear With the 
Drilling Parameters
 The correlation coef  cient (R) is selected to study the 
relative importance between the inputs (RPM, ROP, WOB, 
T, GPM, and SPP) and the outputs ( tcomp and tshear). For 
the P-wave model, it is found that tcomp has a correlation 
coef  cient of –0.10, 0.23, 0.12, 0.07, 0.08, and 0.21 with 
GPM, RPM, SPP, T, WOB, and ROP, respectively. WOB 
and T have the lowest R-value with tcomp, as shown in Fig. 2. 
However, plotting tcomp vs. T and WOB showed that both T 
and WOB vary greatly with tcomp, as shown in Figs. 3a and 
3b, respectively. Accordingly, these variations would have 
effects on the predicted tcomp values. The more information 
available on the problem attribute, the more accuracy is 
expected from the developed network. Therefore, these two 
inputs were not excluded despite their low-linear correlation 
coef  cient with the output.

Table 1—Statistical Analysis for the Selected Data Set

Gowida and Elkatatny
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Fig. 1—Graphical presentation of the input data used for developing the proposed models.
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Fig. 2—Relative importance between the input(s) and compressional-
wave transit time, tcomp.

Fig. 3—The distribution of the two input parameters T and WOB with 
compressional-wave transit time (a) tcomp vs. T and (b) tcomp vs. WOB. 
This shows obvious variations in tcomp along with the T and WOB data 
ranges.

(a)

(b)

 For the S-wave model, tshear is found to have R of 
–0.12, 0.22, 0.17, –0.07, –0.17, and –0.08 with GPM, RPM, 
SPP, T, WOB, and ROP, respectively, as shown in Fig. 4. 
The low value of R only indicates that there is no signi  cant 
linear relationship between the two variables under study; 
however, any other nonlinear relation between them may 
exist. ROP and T are found to have low R values with tshear. 
So, to check the variation of these parameters with tshear, 
Figs. 5a and 5b are plotted to show that ROP and T vary 
signi  cantly with different tshear values. These variations 
would probably help the neural networks to learn more 
about the nature of the problem so that it would be able to 
 gure out any nonlinear relation between the inputs and the 

desired output.

P-WAVE AND S-WAVE TRANSIT-TIME MODEL 
DEVELOPMENT

 The selected input parameters (GPM, RPM, SPP, T, 
WOB, and ROP) are then used for training the networks 
to optimize the neural network parameters. The ANN 
parameters to be optimized include:

 The splitting ratio of the data set for the training and 
testing processes
Training algorithm
Transfer functions
Number of neurons in each hidden layer
Number of hidden layer(s)
Learning rate

 The developed neural network was trained using the 
stochastic gradient descent optimization algorithm, and 
weights are updated using the backpropagation of error 

Fig. 4—Relative importance between the input(s) and shear-wave 
transit time, tshear.

Gowida and Elkatatny
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algorithm. The gradient descent algorithm seeks to change 
the weights so that the next evaluation reduces the error, 
meaning the optimization algorithm is navigating down 
the gradient (or slope) of error. The mean squared error 
(MSE) was used as a function to loss to estimate the error 
and update the network weights to reduce that error to the 
minimum possible value.
 The optimization process was implemented using 
different combinations of the available options of the 
aforementioned ANN parameters. The optimized parameters, 
which resulted in the highest correlation coef  cient (R) 
and the lowest average absolute percentage error (AAPE) 
between the predicted and the measured values of tcomp and 

tshear, were selected. The selected optimized parameters 

Fig. 5—The distribution of the two input parameters ROP and T with shear-wave transit time (a) tshear vs. ROP and (b) tshear vs. T. This shows an 
obvious variation in tshear along with the whole data ranges of ROP and T.

(a) (b)

Table 2—Optimized ANN Parameters

are listed in Table 2. Figure 6 shows the architecture of the 
developed tcomp and tshear models.
 The obtained results showed a high match between the 
predicted and measured tcomp values with R of 0.96 and 
0.94 and an AAPE of 0.99 and 1.18% for the training and 
testing processes, respectively. In Fig. 7, the signi  cant 
match between the actual and predicated tcomp values is also 
inferred from the crossplots, which show that the predicted 
values were so close to the actual values. Figure 8 shows 
a graphical distribution of the actual vs. predicted tcomp 
values for training and testing processes. Moreover, the 
absolute percentage error distribution between the actual 
and predicted tcomp values over the total used data points 
did not exceed 3.8% of the actual value, as shown in Fig. 9.

Prediction of Sonic Wave Transit Times From Drilling Parameters While Horizontal Drilling in Carbonate Rocks Using Neural Networks
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Fig. 6—Typical architecture of the developed ANN models.

Fig. 7—Crossplots between the actual and predicted tcomp values for (a) training and (b) testing processes.

Gowida and Elkatatny
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(b)

(a)

Fig. 8—Graphical distribution of the actual vs. predicted tcomp values for (a) training and (b) testing processes.

Fig. 9—Absolute percentage error distribution over the total used data points between actual and predicted tcomp values.

 In Fig. 10, the crossplot of the actual and predicted tshear 
showed the high accuracy of the developed model where R 
was 0.95 and 0.93 for the training and testing processes, 
respectively. In Fig. 11, the absolute error distribution 
con  rmed the robustness of the developed model as the 
highest error did not exceed 3.6% of the measured tshear 

values. Besides, as seen in Fig. 12, plotting the measured 
and predicted tshear values on a graphical distribution infers 
the high accuracy of the prediction process as most of the 
predicted values are so close to the corresponding measured 
values and have an AAPE of 0.80 and 0.87% for the training 
and testing processes, respectively.  

Prediction of Sonic Wave Transit Times From Drilling Parameters While Horizontal Drilling in Carbonate Rocks Using Neural Networks
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(a) (b)
Fig. 10—Crossplots between the actual and predicted tshear values for (a) training and (b) testing processes.

Fig. 11—Absolute percentage error distribution over the total used data points between actual and predicted tshear values.

MODELS VALIDATION

 To validate the developed P-wave and S-wave models, a 
data set collected from another well in the same  eld under 
study is used to feed the developed networks to predict tcomp 
and tshear. The selected data set for the validation process 
included 417 data points for a continuous depth range 
comprising GPM, RPM, T, SPP, ROP, and WOB and the 
corresponding tshear and tshear well-log data. After feeding 

the developed models with the input data, the predicted 
results are then compared with the actual measured values. 
The results showed that the predicted tcomp and tshear values 
considerably match the measured values (see Fig. 13) 
indicated by the AAPE of 1.87 and 1.30% for tcomp and 

tshear models, respectively. Figure 14 also shows a crossplot 
between the actual and predicted values of sonic wave 
transit times during the validation process. 

Gowida and Elkatatny
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Fig. 12—Graphical distribution of the actual vs. predicted tshear values for (a) training and (b) testing processes.

(a)

(b)

 According to the discussed results, the developed models 
present a viable tool for predicting tcomp and tshear while 
drilling directly for the permanently available mechanical 
drilling parameters. This technique can be used as an 
alternative to a conventional logging tool in development 
wells, especially since wireline-logging tools are usually run 
into the hole after the drilling operation, which can hinder 
the availability of such information. Sonic wave transit times 
are very bene  cial for identifying the downhole formations 
during drilling to avoid many problems, such as sticking, 

kicks, and blowouts. Besides, it can provide more valuable 
information like formation porosity and the type of  uid 
saturating the pores. Such information is very important, 
especially while drilling reservoir sections for better 
planning decisions. Moreover, the integration between sonic 
wave data and the formation bulk density could be used to 
estimate the elastic parameters of the drilled formations so 
that their mechanical behavior can be calculated in real time 
during the drilling process, and adequate real-time actions 
can be taken.

Prediction of Sonic Wave Transit Times From Drilling Parameters While Horizontal Drilling in Carbonate Rocks Using Neural Networks



492 PETROPHYSICS October 2020

Fig. 13—Comparison between the measured and predicted values from (a) P-wave models and (b) S-wave models during the validation process.

Fig. 14—Crossplots between the measured and predicted values from (a) P-wave models and (b) S-wave models during the validation process.
(a) (b)
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CONCLUSIONS

 In this work, a neural network technique has been 
implemented to develop two models for predicting the 
compressional P-wave ( tcomp) and the shear S-wave ( tshear) 
transit times based on mechanical drilling parameters 
(GPM, RPM, WOB, T, ROP, and SPP). The optimized ANN 
parameters for the developed models can be summarized as 
both tcomp and tshear comprised of only one hidden layer 
containing 20 neurons for the tcomp model and 23 neurons 
for the tshear model. Both models were trained using the 
Levenberg-Marquardt backpropagation algorithm with a 
learning rate of 0.12 using transfer functions of the Tans-
Sigmoidal type. The results showed a signi  cant agreement 
between the predicted and measured values with a correlation 
coef  cient (R) of 0.94 and 0.93, in addition to an AAPE of 
1.18 and 0.87% for tcomp and tshear predictions, respectively. 
The developed models are then validated using 417 new 
(unseen) data points from the same  eld to test the robustness 
of these models. The validation process demonstrates the 
high accuracy of the developed models indicated by an 
AAPE of 1.87 and 1.30% for tcomp and tshear, respectively. 
The prediction of tcomp and tshear while drilling using the 
developed models will help to identify the nature of the 
drilled formations once the bit touches the rock, in addition 
to the ability to estimate the dynamic geomechanical elastic 
parameters (Poisson’s ratio and Young’s modulus) of the 
rock, which will help to avoid several interrupting problems.

NOMENCLATURE

Abbreviations
ANN = 

AAPE = 
GPM =

RHOB =
ROP =
RPM = 
SPP =

T =
WOB =

Tansig =
Pure-linear =

Symbols
P-wave transit time
S-wave transit time
formation bulk density

tcomp =
tshear =

 =

arti  cial neural network
average absolute percentage error
gallon per minute
bulk density, gm/cm3

rate of penetration, ft/hr
revolution per minute 
standpipe pressure, psi
torque, klb-ft
weight on bit, klb
tangent sigmoid transfer function
linear transfer function
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ABSTRACT

 Conventional well-log-based rock classi  cation often 
overlooks rock-fabric features (spatial distribution of solid 
and  uid-rock components), which makes it not comparable 
against geologic facies, especially in formations with 
complex rock fabric. This challenge is usually addressed 
by the identi  cation of geological facies from the 
core description and their integration with measured 
petrophysical properties. However, manual identi  cation 
of geological facies using core data is a tedious and time-
consuming process. In this paper, we propose an automatic 
work  ow for joint interpretation of conventional well logs, 
computed tomography (CT) scan/core images, and routine 
core analysis (RCA) data for simultaneously optimizing 
rock classi  cation and formation evaluation. First, we 
perform conventional well-log interpretation to obtain 
petrophysical properties of the evaluated depth intervals. 
Subsequently, we automatically extract rock-fabric-related 
features derived from core photos and core CT scan images. 
Then, we use a clustering algorithm to obtain rock classes 
from the extracted rock-fabric features. We optimize 
the number of rock classes by iteratively increasing the 
number of rock classes from an initially assumed number 
until a permeability-based cost function converges below a 
prede  ned threshold.  The proposed work  ow will provide 
(i) quantitative wellbore/core image-based rock-fabric-

INTRODUCTION

 The integration of geological facies and petrophysical 
properties is a crucial step in rock classi  cation. Rock 
classi  cation based solely on conventional logs often 
overlooks rock-fabric features and may not yield rock 
classes with well-de  ned dynamic behavior. Additionally, 
petrophysical rock classes may not always be related 
to reservoir geobodies, which makes the interwell 
extrapolation of petrophysical rock classes challenging. On 

related features, (ii) automatic integration of rock-fabric-
related features with conventional well logs and RCA 
data, and (iii) automatic and simultaneous assessment 
of rock classes and petrophysical properties, honoring 
rock fabric. Additionally, the outcomes of the proposed 
work  ow can help to expedite the process of geological 
facies classi  cation by providing an overview of different 
lithologies and an overall stacking pattern.   
 We successfully applied the proposed work  ow to 
a sedimentary sequence with vertically variable rock 
fabric and lithology. Dual-energy-acquired core CT scan 
images were available along with core photos, RCA data, 
and conventional well logs. Image-based integrated rock 
classes were in agreement with the lithologies encountered 
in the evaluated depth interval. Class-by-class permeability 
models improved permeability estimates by 89% (decrease 
in mean relative error) in comparison to formation-
by-formation permeability estimates. Furthermore, the 
detected rock classes were consistently propagated to 
another well where core and CT scan images were not 
employed for rock classi  cation. The detected rock classes 
were in agreement with lithofacies obtained from the core 
description. Permeability estimates were also in good 
agreement with available RCA data.  

the other hand, rock typing based solely on geological facies 
overlooks the rock dynamic properties, such as permeability, 
wettability, capillary pressures, and relative permeability. 
Rocks belonging to the same geological facies may have 
contrasting dynamic properties (Bae et al., 2006; Gomes et 
al., 2008). The contrast is further accentuated by early and 
late diagenetic changes that the rock may experience as well 
as by rock-  uid interactions.
 To overcome these challenges, a synergistic integration 
of geological facies with associated dynamic properties is 
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carried out to characterize the  ow behavior of different 
rock types. The dynamic properties are usually available 
only from core measurements and indirectly from the 
interpretation of well-log measurements. The geological 
facies, on the other hand, are obtained by a physical 
description of core data, which is a tedious, time-consuming, 
and expert-dependent process. In order to reduce the time 
spent and the subjectivity introduced in the process of 
facies derivation from core description and wellbore image 
interpretation, several methodologies have been proposed to 
expedite and standardize intermediate steps of this process. 
Facies identi  cation using well logs was  rst introduced by 
Serra and Abbott (1982).  In this work, they used well logs 
capturing geological parameters (e.g., composition, texture, 
and sedimentary structure) and  uids along with clustering 
techniques to de  ne “electrofacies.” They used a dipmeter log 
as a proxy for rock texture (grain size, grain shape, sorting, 
distribution, matrix, and cement) and sedimentary structure 
(thickness and degree of lamination). Further development of 
dipmeter tools resulted in microresistivity imaging devices 
giving rise to resistivity image logs. Resistivity image logs 
contain essentially the same information as dipmeter logs 
but at a higher resolution and with a higher coverage of 
the wellbore circumference. The advent of this technology 
motivated the work of Torres et al. (1990), Delhomme 
(1992), Luthi (1994), Hall et al. (1996), Ye et al. (1997), 
Ye and Rabiller (1998), Kraaijveld and Epping (2000), 
Linek et al. (2007), Jungmann et al. (2011), and Kherroubi 
et al. (2016), among others. The main objective of the 
aforementioned authors was to quantify and characterize 
both rock texture and sedimentary structure using a 
combination of image analysis techniques and learning 
algorithms. The use of other types of wellbore/core image 
data (e.g., core photos, micro-CT, and CT scan images) 
for quanti  cation and characterization of rock texture and 
sedimentary structure has been reported by Georgi et al. 
(1992), Chacko et al. (2012), Fitzsimons et al. (2016), 
and Govert et al. (2016), among others. The gross of the 
aforementioned references did not integrate the quantitative 
outcomes of rock texture and sedimentary structure with 
other well-log information to obtain “electrofacies” in 
the sense described by Serra and Abbott (1982). The use 
of wellbore/core image data, acquired honoring different 
physical principles and at different resolutions, reveals 
different characteristics of the evaluated rock interval. 
For instance, micro-CT scan images can reveal the pore 
structure of the rock, while resistivity image logs reveal 
structures of the rock in the millimeter scale.

 Recent publications by Basu et al. (2002), Suarez-
Rivera et al. (2012), and Al-Obaidi et al. (2018) integrated 
quantitative features derived from wellbore/core image data 
and well-log data for facies detection. Purba et al. (2018) 
developed a work  ow for rock classi  cation using well-
log-based rock-fabric quanti  cation. They used pore-scale 
images to carry out numerical simulations of electrical 
current and  uid  ow, which quanti  ed the relationship 
between electrical resistivity, conducting porosity, and 
permeability. Optimization of the number of rock classes 
in the aforementioned approach was accomplished by 
minimizing relative errors between permeability estimates 
in two subsequent iterative steps, following a similar 
method as the one proposed by Tibshirani et al. (2001) and 
Salvador and Chan (2004) using a cost function for the 
different number of classes and  nding the “knee of error.” 
Al-Obaidi et al. (2018) proposed an automatic work  ow for 
rock classi  cation by the integration of conventional well 
logs and image logs. The number of rock classes in the 
aforementioned work  ow was obtained by means of a data 
clustering technique that seeks to automatically optimize the 
Bayesian Information Criterion (BIC).
 Automatic detection of petrophysical rock classes and 
estimation of petrophysical properties through integration of 
wellbore/core image data with conventional well logs and 
RCA data is a nontrivial task. In this paper, we introduce 
a work  ow for optimizing the number and location of 
rock classes through the integration of multiscale image 
data, conventional well logs, and RCA data. The proposed 
work  ow employs image analysis and machine-learning 
techniques. Image-based rock-fabric features are derived 
from available multiscale image data using image analysis 
techniques. We identify rock classes in an iterative process 
by optimizing a permeability-based cost function. Finally, 
we use the image-derived rock classes to train a supervised 
learning algorithm in order to predict rock classes from well 
logs in an offset well without using core photos or CT scan 
images. In this paper, we use the term rock-fabric features as 
any quantitative feature extracted from wellbore/core image 
data that can be used for the detection of rock classes. On the 
other hand, the term texture is employed strictly in reference 
to image texture rather than rock texture. Texture in the 
image analysis domain is commonly de  ned as a region of 
an image where a local statistic is constant or varies slowly 
(Sklansky, 1978). On the other hand, rock texture is often 
de  ned as the size, shape, and arrangement of the grains that 
make up the rock (Serra and Abbott 1982).
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METHOD

 We introduced a work  ow for automatic rock 
classi  cation and integrated formation evaluation using 
conventional well logs, core CT scan images, core photos, 
and RCA data. Figure 1 shows the proposed work  ow 
employed for automatic image-based rock class detection 
and formation evaluation. The proposed work  ow includes 
conventional formation evaluation of the evaluated depth 
interval, rock-fabric features quanti  cation from available 
multiscale image data, image-based rock classi  cation, 
optimization of rock classes by the integration of image data 
with conventional well logs and RCA data, and propagation 
of rock classes to noncored wells.  The following subsections 
describe the steps of the proposed work  ow in more detail. 
The main steps of the proposed work  ow can be summarized 
as follows:

1. Preprocessing of available image data 
2. Extraction of image-based rock-fabric-related 

features 
3. Conventional formation evaluation
4. Simultaneous detection of integrated rock classes 

(data clustering) and class-based assessment of 
petrophysical properties  

5. Training of a supervised learning algorithm using 
the integrated rock classes as well as conventional 
well logs 

6. Estimation of rock classes in noncored wells using 
the trained, supervised learning algorithm and 
conventional well logs from the noncored well

7. Class-based assessment of petrophysical properties 
in noncored wells

Fig. 1—Work  ow for optimization of number and location of rock classes through the integration of multiscale image data, conventional well logs, 
and RCA data.
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Conventional Formation Evaluation 
 The  rst step includes formation evaluation in the interval 
of interest using conventional well logs. At the initial stage, 
properties, such as porosity, water/hydrocarbon saturation, 
and permeability, are estimated assuming the same model 
parameters to the rock physics models in the entire depth 
interval for a given formation. After identi  cation of the 
optimum number of classes, formation evaluation is carried 
out on a class-by-class basis. Input parameters for the rock 
physics models will be updated in each identi  ed rock class.

Preprocessing of Image Data
 Core CT scan images often include depth intervals with 
missing data due to poor core recovery, induced fractures, 
or rush plugs taken after core retrieval. These missing core 
intervals can introduce undesired responses in image-derived 
features, which ultimately will affect the detected rock 
classes. The same challenge appears when deriving features 
from core photos. Moreover, core photos could further be 
affected by the creation of induced fractures during the 
core slabbing process. Coring barrel is also visible in the 
photos on the edges. In order to minimize the effect of these 
artifacts, we employed two separate approaches to  ag or 
to remove these image artifacts for each type of image data 
(i.e., CT scan images and core photos). Figure 2 shows depth 
intervals with missing core material for both core CT scan 
images and core photos. In the case of whole-core CT scan 
images, both the core barrel and the annulus between the 
core and the core barrel have been previously removed.

Fig. 2—Samples of image data with missing core material: (a) CT 
scan image YZ cut and (b) slabbed core photo. The red boxes indicate 
regions with missing core material. The yellow dashed lines indicate the 
location of a plug taken for RCA. The changes in the spatial distribution 
of grayscale intensity values in the CT scan image (a) represent changes 
in the fabric of the evaluated interval. Similarly, the change in colors from 
brown to gray displayed in the slabbed core photos (b) indicates the 
presence of cement.

Integrated Multiphysics Work  ow for Automatic Rock Classi  cation and Formation Evaluation Using Multiscale Image Analysis and Conventional Well Logs

 CT Scan Images. The missing core intervals have a 
zero CT reading. Therefore, to  ag these intervals, we  rst 
computed the mode of the gray-level values at each depth. 
Then, we de  ned a two-conditional criterion as follows: if 
the mode at a particular depth was zero and frequency of the 
mode at that depth was more than 30% of the total number 
of pixels, the depth interval was automatically  agged.  As 
an alternate approach, we trained a multilayer perceptron for 
detecting the missing core-depth intervals. Nevertheless, the 
results obtained with the two conditional criteria approach 
provided more consistent results. Thus, we used this 
technique for the preprocessing of all the available CT scan 
image data. Figure 3a shows the histogram and cumulative 
frequency of the region of the CT scan image enclosed in 
the red box. The histogram shows a mode of zero with a 
cumulative frequency higher than 30%. 
 Core Photos. Figure 3b shows the histograms for each 
individual channel from a slabbed core photo in an 8-bit RGB 
format. We removed the core barrel visible on the edges of 
the photos by clipping the image on the sides. Unlike CT 
scan images, in which the regions of missing core intervals 
have zero values, the missing intervals in core cover a wide 
range on the grayscale spectrum when the color image is 
loaded as a grayscale image. On the gray-level histogram 
from 0 to 255 scale, the fractures are darker compared to the 
intact rock and hence form the left-end tail of the histogram 
(i.e., gray-level values of less than 50). The areas of seal 
peel are white and form the right-end tail of the gray-level 
histogram (i.e., gray-level values of greater than 210). In 
areas where the core barrel is visible in the middle of the core 
photo due to poor core recovery, we recognized a distinctive 
response on the textural entropy. These areas have smoother 
texture compared to the rocks and hence low-entropy values 
(less than 0.3 on normalized entropy histogram). After 
identi  cation, the parts of images with fractures, seal peel, 
and barrel were captured in a mask image. We applied a 
dilation morphological operation on the mask image to  ll 
in the holes that were not detected by histogram cutoffs. The 
locations on the image identi  ed with the mask were then 
replaced with null values and hence not taken into account 
in subsequent analyses. 

Image-Based Rock-Fabric Features
 The numerical description of an image often includes 
gray-level and textural descriptors in the case of grayscale 
images and color and textural features in the case of color 
images. The word “texture” in this paper is strictly related to 
texture content in the image analysis context and should not 
be confused with the texture in the geology domain. In this 

(a)                                        (b)
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paper, we computed features for color/grayscale and texture 
for each type of image data in order to capture and quantify 
rock-fabric features. Computation of the extracted features 
is independent of the direction of the well (i.e., deviated 
wells or vertical wells) and the presence of dipping beds. 
However, both the angle of dipping beds and the directional 
pro  le of the well should be taken into account in the rock 
classes detection step.
 Gray-Level Features of Core CT Scan Images. In order 
to capture the gray-level intensity variations of the CT scan 
images in a depth-by-depth basis, we computed the average 
of the gray-level values at each depth via

(1)

where GLi is the gray-level value at each pixel of a particular 
depth, and N is the total number of pixels at each particular 
depth. The full matrix can be used, if computational time 
is not a concern, or if horizontal variations in gray-level 
intensity are not negligible and have a measurable impact 
on the outcome. 
 Color Features of Core Photos. Color is an important 
descriptor of lithofacies and can help distinguish between 

Fig. 3 —Histogram of (a) CT scan image YZ cut and (b) slabbed core photo. The histogram and cumulative frequency curve correspond to the region 
enclosed by the red box in the (a) CT scan image. The red dashed line represents the 30% threshold for the cumulative frequency curve. 

(a)                                                                                                               (b)

rock types that have a similar texture on grayscale. For 
instance, cemented sandstones can be easily distinguished 
from the noncemented ones using color information when 
compared to a case where only grayscale values are used. We 
used hue, saturation, and value (HSV) channels to extract the 
color information from the core photos. In the color space 
(HSV) used in this paper, hue refers to the pure color being 
described, saturation describes how “white” the color is, and 
value or intensity describes how dark the color is. Since the 
available core photos were encoded in red, green, and blue 
(RGB) channels, the core photos were  rst converted to HSV 
channels prior to extracting the color information. Finally, to 
get depth-tagged values for each channel, we averaged the 
pixel values across each row of the image. If computational 
time is not an issue, or if variations of color in the horizontal 
direction are not negligible and have a measurable impact on 
the outcome, the full matrix of the image can be used. 
 Textural Features of Core CT Scan Images. Texture 
is often de  ned as a region of an image in which a set of 
local statistics or other properties of the image are constant 
or vary slowly (Sklansky, 1978). However, there is no 
clear consensus in the de  nition of texture. Consequently, 
various approaches exist to describe the textural information 
contained in a given image. These approaches can be 
classi  ed as statistical-, model-, and transform-based.
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 In order to describe the textural content of core CT scan 
images, we  rst employed a decomposition scheme using 
the Wavelet transform (Goupillaud et al., 1984). The wavelet 
transform has also been used in machine-learning-assisted 
segmentation tasks (Misra et al., 2019a). We decomposed 
the images using the Haar mother wavelet (Porwik and 
Lisowska, 2004) to obtain so-called detail images that 
enhance textural image information at speci  c orientations 
(i.e., horizontal, vertical, and diagonal). We speci  cally used 
the horizontal detail image to provide features in order to 
discriminate between vertically stacked rock classes. Then, 
we used a textural extraction algorithm termed gray-level 
co-occurrence matrix (GLCM) (Haralick et al., 1973), a 
statistical-based approach (Bharati et al., 2004), which is 
reported to outperform other approaches in classi  cation 
tasks (Ohanian and Dubes, 1992). Other texture extraction 
algorithms, such as local binary patterns, have been used in 
work  ows integrating machine-learning and image analysis 
techniques for the detection of relevant petrophysical 
attributes, such as organic matter (Wu et al., 2019).
 The GLCM method quanti  es the occurrence of pairwise 
pixel relationships between reference and neighboring 
pixels in a given image. These relationships are computed 
at a prede  ned offset distance and direction. Figure 4 shows 
the computation of the GLCM for one pixel of offset in the 
west-east direction for a simpli  ed grayscale image. In the 
simpli  ed grayscale image displayed in Fig. 4, each pixel 
is visited once and de  ned as the reference pixel. Then, 
according to the selected offset and direction, the relationship 
with the neighboring pixel is summarized in the GLCM (e.g., 
the occurrence of reference pixel 0 and neighboring pixel 1 
occurs in the west-east direction twice when considering one 
pixel of offset; as such, the entry (0,1) in the GLCM matrix 
has a value of two).

Fig. 4—GLCM computed for a simpli  ed image with one pixel offset in 
the west-east direction.

 GLCM is usually computed along four main orientations 
(horizontal, vertical, and two orthogonal diagonals). 
Computation of each one of these orientations is 
accomplished by the addition of GLCM in one direction 
and the transpose of the GLCM in the opposite direction 
(e.g., GLCM west-east and the transpose of GLCM east-
west). Finally, the resultant GLCM is normalized by the 
number of pixels in the image. Once this is done, up to 
14 textural features can be computed using the GLCM 
(Haralick et al., 1973). This method was originally 
developed for stationary grayscale texture images (i.e., 
images composed of a single texture).
 In the case of nonstationary grayscale texture images 
(i.e., images that are composed of more than one texture), 
GLCM is computed over a small region (window) of the 
image. In order to fully describe the textural content of a 
nonstationary image, this window is placed at the center of 
each pixel, and the GLCM is computed. Then, the desired 
textural feature is derived from the previously computed 
GLCM, and the resultant value is assigned to the center pixel 
of the window. The window is then moved by one pixel, and 
the process is repeated until all the pixels of the image are 
covered. As a result, a new image representing the desired 
textural feature is obtained. In this paper, we computed 
contrast and energy via

  (2)

and

  (3)

 where G(i,j) are the elements of the computed GLCM, N 
is the number of distinct gray levels in the input image, 
and i and j are the row and column number of the GLCM, 
respectively. Finally, after computing the textural images 
of the horizontal detail image, we transformed the textural 
image in a depth-by-depth basis via 

 
  (4)

 where TFi is the textural feature value corresponding to each 
pixel, and Np is the total number of pixels at each depth.
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 GLCM/Window-Size Optimization. Window size is a 
critical parameter in texture feature extraction algorithms. 
Optimum window size should be large enough to capture 
the textural information of the textures present in the image. 
At the same time, an optimum window size should be small 
enough to produce features that allow a precise detection of 
the boundary between the different textures that compose the 
image. Optimum window-size estimation is typically done 
by trial and error and quality assessment of the expected 
outcome obtained from the extracted features. In this 
paper, we employed an approach proposed by Franklin et 
al. (1996) and Diehl et al. (2002) to automatically compute 
the optimum window size for textural feature extraction. 
The employed approach uses the spatial correlation concept 
by computing the experimental variogram of the gray-level 
values of the image and the estimated correlation length in 
the experimental variogram. The correlation length de  nes 
the distance at which a particular property is no longer 
correlated and can be used as a proxy for the optimum 
window size. 
 We computed the experimental variogram in the vertical 
direction of the image via

  (5)

where GLi is the i-th pixel gray-level value, h is the lag 
distance, and NL is the number of pixel pairs at lag distance 
h. The variogram was computed for a maximum lag distance 
of half of the pixels in the vertical direction of an image 
covering one meter. The computation of the experimental 
variogram in the vertical direction was motivated by 
the relatively high variation commonly encountered in 
a sedimentary sequence in comparison to the horizontal 
variation. Then, we computed the  rst derivative of the 
experimental variogram. We used the  rst derivative to 
locate the lag distance at which the slope of the experimental 
variogram changed from positive to negative for the  rst time 
(correlation length). Finally, the estimated correlation length 
was employed as the dimensions of the optimum window 
size in the GLCM algorithm. Figure 5 shows the vertical 
experimental variogram, its  rst derivative for the displayed 
synthetic image, and the detected optimum window size. 
Additionally, Fig. 5 displays the effect of window size on 
the detected clusters for the displayed synthetic image when 
using the optimum window size and a  xed window size of 
151 × 151 pixels. As observed in column 4 (detected clusters 
with a window size of 151 × 151 pixels) of Fig. 5, the size 
of the employed window for texture extraction can strongly 
impact the accuracy of the detected clusters resulting in 
misclassi  ed intervals.

Fig. 5—Window-size optimization and detected clusters for a synthetic image, including  ve different texture from the Brodatz texture images 
(Brodatz, 1966). The  rst column displays a synthetic image composed of  ve different textures. The second column displays both the vertical 
direction experimental variogram and its  rst derivative. The last two columns display the detected clusters using the optimum window size and a  xed 
window size of 151 × 151 pixels, respectively.  
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  Textural Features of Core Photos. Core photos have 
texture information at a higher resolution than the CT 
scan images. However, the higher resolution makes the 
calculation of GLCM features on long-interval core photos 
computationally expensive. The computation time of the 
GLCM for the CT scan image (4-bit) covering a 42-m depth 
interval (35,447 pixels in the y-direction and 384 pixels in 
the x-direction) using a window size of  21 × 21 pixels takes 
approximately 30 minutes, using a computer with a Core-i7 
CPU @ 3.60 GHz and 32 GB of RAM. This can be mitigated 
by either reducing the resolution of the core photos or by 
using less computationally expensive techniques. Therefore, 
to preserve the resolution and, at the same time, optimize 
computation time, we used an entropy  lter to estimate 
the roughness of texture. Entropy is de  ned by a base-2 
logarithm of the range of gray-level distribution within a 
de  ned kernel. We used a 48 × 10 kernel to extract textural 
entropy. The rectangular kernel was chosen because a greater 
variation in texture is expected in the vertical direction than 
in the horizontal direction. Finally, to get entropy values 
corresponding to each depth, we averaged the entropy for 
each row of the image.

Detection of Rock Classes Using Image-Based Features
 Before integrating the image-based rock-fabric features 
with conventional well logs and RCA data, we designed a 
work  ow for automatic detection of rock classes from image 
data (Fig. 6). The objective of this work  ow was to evaluate 
the capacity of the extracted image-based rock-fabric-related 
features to form clusters that re  ect the visual content of the 
image data employed. We used a numerical approach to 
optimize the number of rock classes to avoid bias introduced 
by a user-de  ned number of rock classes.

Fig. 6—Work  ow for automatic detection of image-based rock classes.

 First, we extracted the aforementioned features from 
core CT scan images covering one meter. Then, we used a 
data clustering algorithm (i.e., k-means) to determine the 
existing rock classes in the evaluated depth interval. Given 
that the number of rock classes in the evaluated depth 
interval was unknown, we employed a cluster validation 
index to estimate the optimum number of rock classes in 
the evaluated intervals. We used a cluster validation index, 
called the silhouette coef  cient, which was introduced by 
Rousseeuw (1986). The silhouette coef  cient per sample is 
estimated via

  (6)

where ai is the average dissimilarity of the i-th sample with 
respect to the other samples of its own cluster and bi is 
the dissimilarity of the i-th sample cluster with respect to 
the closest neighboring cluster. The dissimilarity measure 
used in the computation of the silhouette coef  cient is the 
Euclidean pairwise distance. It should be noted that other 
pairwise distances (e.g., Manhattan, Citiblock, and Cosine) 
can also be used. In order to optimize the number of rock 
classes,  rst, we averaged the silhouette coef  cient per 
sample for an increasing number of rock classes. Finally, we 
selected the optimum number of rock classes as the number 
of rock classes that gave us the highest average silhouette 
coef  cient value.

Iterative Method for Improving Image-Based Rock 
Classi  cation and Permeability Assessment
 Integration of Image-Based Features With RCA Data 
and Well Logs. We performed image-based rock classi  cation 
using features derived from core CT scan images and core 
photos as inputs for a k-means data clustering algorithm. We 
used average gray-level value, contrast, and energy derived 
from CT scan images, and hue, saturation, value, and entropy 
derived from core photos, as well as formation tops as 
inputs for image-based rock classi  cation.  We incorporated 
formation tops as numerical features by creating a synthetic 
log with integer numbers representing each encountered 
formation. Each formation was represented by an integer 
number ranging from one to the total number of encountered 
formations. Before clustering the input data, we removed data 
points from depth intervals  agged as missing core-depth 
intervals. Then, all the input data was scaled in the range of 0 
to 1 to prevent biased results toward a speci  c feature. Once 
the data was scaled, we used principal component analysis 
(PCA) to generate a new set of independent features. PCA is 
commonly used in data clustering tasks to reduce the number 
of redundant features (Misra et al., 2019b). In this paper, we 
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used the minimum number of components that explain at 
least 95% of the variance of the original features. After using 
PCA, the four  rst principal components explained 95% of 
the variance of the original set of eight features. Finally, we 
iteratively clustered the input data for an increasing number 
of classes (i.e., from two to a maximum of ten classes). 
 Iterative Approach for Optimization of Number of 
Rock Classes. At each iteration, we generated porosity-
permeability models using available RCA data on a class-by-
class basis (i.e., one permeability model per detected class). 
The porosity-permeability model employed is the regression 
line obtained from a semilog crossplot of RCA porosity and 
permeability. At each iteration, we computed a permeability-
based cost function de  ned by

  (7)

where kest,i is the permeability estimate, kcore,i is the core 
permeability, and Nperm is the total number of core permeability 
measurements. The employed cost function seeks to 
minimize the error between core-measured permeability and 
estimated permeability. Finally, we selected the optimum 
number of classes as the number classes for which the 
de  ned cost function converges below a threshold. It should 
be noted that the cluster validation index described in the 
previous section was not employed in the iterative approach 
herein described.

Propagation of Rock Classes to Offset Wells Without 
Image Data
 We trained a supervised learning algorithm (quantitative 
classi  cation) in a commercial formation evaluation software 
with conventional well logs as input data and image-based 
rock classes (from the well with image data) as labels to 
predict rock classes in an offset well (without using image 
data). The quantitative classi  cation de  nes the label of each 
sample by computing the distance between the labeled sample 
(rock classes) and the unseen sample. The rock classes used 
in this step were obtained using the work  ow introduced in 
the section “Integration of Image-Based Features With RCA 
Data and Well Logs.” In this paper, we used gamma ray, bulk 
density, neutron porosity, and shear-wave slowness as input 
data for training the quantitative classi  cation algorithm. 
Finally, we compared the permeability estimates in the offset 
well against the available RCA data. We also veri  ed the 

reliability of the rock classes by comparing them against the 
available core description.

FIELD APPLICATION

 We applied the proposed method to two wells, Well 
A and Well B. The depth interval of interest in this  eld 
data covers three formations: Formation 1, Formation 2, 
and Formation 3, from bottom to top. These formations 
represent three main lithologies: (i) Formation 1 constitutes 
a succession of coarse-grained sandstones; (ii) Formation 2 
comprises spiculites, which is a biogenic rock predominantly 
composed of sponge silica spicules, and (iii) Formation 3 
comprises an interval of marlstones and limestones. We 
used the extracted image-based features in Well A and 
the formation tops together for rock classi  cation using 
an unsupervised clustering algorithm (i.e., k-means). We 
veri  ed the reliability of the obtained rock classes against 
the visual description of the rock facies and also against 
available RCA data. Subsequently, we used the obtained 
rock classes in Well A to propagate rock classes to the offset 
well (Well B) using conventional well logs. We veri  ed 
the reliability of the results obtained in the offset well with 
available RCA data. 

Data Set Description
 Well Logs. The available conventional well logs in 
both wells include gamma ray, bulk density, neutron 
porosity, array induction resistivity, photoelectric factor, 
compressional-wave slowness, and shear-wave slowness. 
 Image Data. We used dual-energy-acquired CT scan 
cross-sectional image cuts from raw 3D CT scan volume 
with a resolution of approximately 4.5 millimeters per pixel. 
These images were encoded in 8-bit format (i.e., 0 to 255 
grayscale). Additionally, core photos at different resolutions 
were provided. Core photos were initially encoded in 8-bit 
RGB (i.e., red, green, and blue) format. We converted them 
to HSV format before the feature extraction step. Figure 7 
shows examples of a core CT scan image and a core photo 
covering one meter of core.
 Core Data. We used RCA information, such as total 
porosity, absolute permeability, and visual core description, 
with sampling rates as low as 0.1 m for two purposes. First, 
we used them as part of the iterative work  ow for optimizing 
the number of rock classes. Second, they are used for 
veri  cation of the estimated formation properties, such as 
porosity, permeability, and water/hydrocarbon saturation.
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Fig. 7—Examples of image data used in this paper: (a) CT scan image 
(YZ cut) and (b) slabbed core photo.

(a)                                              (b)

Conventional Petrophysical Evaluation
 In the  rst step, we performed formation evaluation 
to estimate the volumetric concentration of shale, water 
saturation, and total porosity. The aforementioned properties 
were estimated using gamma ray, bulk density, neutron 
porosity, and array induction resistivity. We estimated 
permeability assuming the same model parameters in the 
porosity-permeability model for the entire depth interval in 
each formation. Table 1 summarizes the input parameters 
for the initial formation evaluation. Results of formation 
evaluation were obtained at a resolution of one sample per 
half a foot, matching the sampling rate of the employed 
logs. However, it should be noted that the sampling rate 
does not re  ect the actual vertical resolution of the well-
logging tools, which is distinct for each tool. This vertical 
resolution can be orders of magnitude less than that of the 
images used for classi  cation. Figure 8 shows the results of 
the initial formation evaluation for the interval of interest. 

The results of the conventional petrophysical evaluation are 
in good agreement with the RCA data. Part of the observed 
mismatch between conventional petrophysical evaluation 
and log data can be attributed to the imprecise depth match 
between well logs and core data, especially in the 2-m piece 
of poorly recovered core within Formation 1. Another cause 
of the mismatch can be rapid changes in the petrophysical 
properties, not captured by the resolution of the employed 
well-logging tools. 

Image-Based Rock Classi  cation Using the Detected 
Rock-Fabric Features
 Core CT Scan Images. Figure 9 shows two examples 
of results for automatic rock classi  cation obtained using 
core CT scan images. These images cover a depth interval of 
one meter. We used average gray-level, contrast, and energy 
as the inputs for the data clustering algorithm. The window 
size employed for the extraction of the textural features (i.e., 
contrast and energy) was automatically computed using 
the spatial correlation approach explained in the section 
“GLCM/Window-Size Optimization.” Both intervals display 
commonly encountered visual geological features. Figure 9a 
shows a layered depth interval, while Fig. 9b shows a depth 
interval with a gradual textural variation. The automatically 
detected rock classes are in good agreement with the visual 
content of the core CT scan images. It should be noted how 
the occurrence of small fractures (Fig. 9b) and relatively 
disperse bright spots (Figs. 9a and 9b) do not result in the 
detection of additional rock classes. This comes as the result 
of using a cluster validation index to optimize the number 
of rock classes. The cluster validation index will favor 
dense and well-de  ned clusters and penalize disperse and 
small clusters. Consequently, a small noticeable response in 
the extracted features due to small fractures and relatively 
disperse bright spots will not signi  cantly affect the detected 
rock classes. 

Table 1—Assumed Input Parameters for Conventional Petrophysical Evaluation in the First Iteration



October 2020 PETROPHYSICS 505

Gonzalez et al.

Fig. 8—Field example, Well A: Conventional formation evaluation. Tracks from left to right: track 1: depth; track 2: formations; track 3: gamma 
ray (GR); track 4: bulk density (RHOB) and neutron porosity (NPHI); tracks 5: shallow (M2R1) and deep resistivity (M2RX); track 6: photoelectric 
factor (PEF); track 7: shear-wave slowness (DTS) and compressional-wave slowness (DTC); track 8: estimated total porosity and core porosity 
measurements; track 9: water saturation; track 10: core CT scan image; and track 11: core photo.

Fig. 9—Examples of automatic detection of rock classes in depth intervals with (a) layered rock texture and (b) a gradual textural variation. The red 
horizontal bars, superimposed to the CT scan image, represent the detected classes. 

(a) (b)
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 Integration of CT Scan Images and Core Photos. 
Figure 10 highlights the importance of the integration of 
multiscale and multiphysics image data for image-based rock 
classi  cation. Core CT scan images capture changes in the 
density of the rock, while core photos display the interaction 
of the light spectrum with the core surface. The automatically 
detected rock classes using the CT scan image (Fig. 10, 
track 4) cannot differentiate between the gray limestone and 
the brown limestone present in the evaluated depth interval. 
On the other hand, automatically detected rock classes from 
core photos (Fig. 10, track 5) cannot distinguish between 
the brown limestone and the sandstone unit. However, the 
integration of image-based rock-fabric features improves 
the automatically detected rock classes by distinguishing 
all the present lithologies in the evaluated depth interval 
(Fig. 10, track 6). For instance, the discontinuous light-
colored features from X945 to X945.7 are successfully 
captured in the integrated  rock classification results. 

Integration of Image-Based Rock-Fabric Features With 
Well Logs and RCA Data for Rock Classi  cation
 We used the work  ow described in section “Image-
Based Rock-Fabric Features” to extract both textural and 
gray-level/color features from the whole-core CT scan 
images and slabbed core photos. Figure 11 shows these 
features along with the corresponding images and the 
depth interval. Energy and contrast are the textural features 
obtained from core CT scan images, and entropy is the 
textural feature obtained from core photos. The color is 
described by the HSV features obtained from core photos. 
We observed that the extracted features respond to the visual 
variations in color as well as the texture of the core images. 
 Features derived from the core CT scan images (i.e., 
contrast and energy) respond to textural variations in the 
encountered lithology. Increase in contrast and decrease in 
energy aid in the distinction between coarse-grained and 
 ne-grained lithologies. On the other hand, features derived 

Fig. 10—Field example, Well A: Comparison of image-based rock classes obtained in a selected depth interval using core CT scan images, core 
photo, and integration of CT scan images and core photos. Tracks from left to right: track 1: depth; track 2: core CT scan image; track 3: core photo; 
track 4: rock classes obtained from core CT scan images; track 5: rock classes obtained from core photos; and track 6: rock classes obtained from 
integration of CT scan images and core photos.
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from core photos, such as hue, saturation, and value, allow 
us to discriminate between lithologies with apparent similar 
textural properties.
 Next, we used the extracted image-based features for 
rock classi  cation using the k-means clustering algorithm. 
We iteratively increased the number of rock classes from 
two to ten. At each iteration, we constructed porosity-
permeability models for each class using available core data 
and used the permeability-based cost function to optimize 
the number of rock classes. Figure 12 shows the plot of the 
calculated cost function against the number of rock classes 
ranging from two to ten. The cost function converges to a 

Fig. 11—Field example, Well A: Image-based rock-fabric features. Tracks from left to right: track 1: depth; track 2: formations; track 3: core CT scan 
image; track 4: textural contrast derived from core CT scan image; track 5: textural energy derived from core CT scan image; track 6: core photo; 
track 7: color hue derived from core photo; track 8: color saturation derived from core photo; track 9: color intensity (value) derived from core photo; 
and track 10: entropy derived from core photo.

stable value in two steps. The  rst step-decrement at three 
rock classes is a result of the identi  cation of three rock 
classes corresponding to the three different formations. The 
second step-decrement is at seven rock classes. It should be 
noted that the drop-in cost function from six to seven rock 
classes is minor (10% relative decrease in cost function) 
compared to other steps. It might lead to an interpretation 
of six optimum rock classes instead of seven. We decided to 
use seven as the optimum number of rock classes. The basis 
for this decision was the scarce permeability measurements 
taken in one of the identi  ed rock classes, which cannot 
be accurately represented in the cost function and could 
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possibly cause a minor drop in cost function instead of 
possibly a larger drop. Figure 13 shows the results of the 
rock classi  cation for the increasing number of rock classes 
from three to seven and the comparison of the well-log-based 
estimated permeability against measured permeability at 
each iteration. Figures 14a, 14b, 14c, 14d, and 14e compare 
core-measured permeability against class-based estimated 
permeability for the increasing number of rock classes from 
three to seven rock classes. Figure 14f shows the decrease 
in the mean relative error for the increasing number of rock 
classes using the case of three rock classes as the baseline. 
Figure 15 compares the integrated rock classes against 
different lithologies encountered in Well A, available from 
the core description.
 Class-by-class estimated permeability models improve 
the agreement between core data and estimated permeability 
by 89% (decrease in mean relative error) when compared 
with formation-by-formation permeability models. We 
observed an absolute average error of less than 0.5 orders 
of magnitude between the core data and estimates of 

Fig. 12—The calculated cost function (Eq. 7) plotted as a function of the 
number of rock classes. This plot suggests seven rock classes as an 
optimum number of rock classes in the  eld example.

permeability, an acceptable error considering the overall 
variation observed in the core permeability measurements 
(i.e., over  ve orders of magnitude).

Fig. 13—Field example, Well A: Comparison of the rock classi  cation results obtained with the number of rock classes ranging from three to seven. 
Tracks from left to right: track 1: depth; track 2: formations; track 3: core CT scan image; track 4: core photo; track 5: estimated total porosity and core 
porosity measurements; and tracks 5 to 15: rock classi  cation results at each iteration and permeability estimates compared against core permeability 
measurements (Core Perm).
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Fig. 14—Comparison of estimated permeability against core-measured permeability for (a) three rock classes, (b) four rock classes, (c)  ve rock 
classes, (d) six rock classes, and (e) seven rock classes, as well as (f) the decrease in the mean relative error against the increase in the number of 
rock classes. The decrease in the mean relative error is computed, taking three classes as the baseline. 

 Figure 16 shows the crossplot of porosity and 
permeability core data for all the seven identi  ed classes. 
The permeability in the selected interval varies by several 
orders of magnitude across the rock classes. Few points 
appear in the middle of clusters that are formed by other 
classes (e.g., in Fig. 16, one point from Rock Class 6 is within 
the Rock Class 1 cluster and is possibly misclassi  ed). Such 
misclassi  cations can be the consequence of the limitations 
of the features employed, the adopted clustering technique, 
lack of enough textural contrast, and/or poor-quality 
CT/core images. The adopted clustering technique (i.e., 
k-means) could be the most critical of the aforementioned 
factors due to the underlying assumptions and limitations of 
the technique. For instance, k-means is suited for spherical, 
well-separated, and similarly sized clusters, which in turn 
can penalize samples forming clusters of different shapes 
and sizes, resulting in misclassi  ed samples. Figure 16 also 

shows a total of  ve points classi  ed as RC1 that display 
high-permeability values, which does not correspond to the 
overall behavior of this class (i.e., low-permeability values 
due to the presence of cement material). Three of these points 
are correctly classi  ed, and the visual appearance of both the 
whole-core CT scan and slabbed core photos agree with the 
visual appearance of the low-permeability points. A possible 
explanation for this observation can be the nonuniform 
cement distribution within the volume of core recovered 
(i.e., the side of the core slab from where the core plug was 
taken has lower cement concentration). The other two points 
were misclassi  ed. The reason for the misclassi  cation is 
an abnormal response in one of the extracted features from 
the whole-core CT scan images caused by bright regions 
originated by the presence of the couplings used to connect 
the coring barrels.
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Fig. 15—Field example, Well A: Comparison of integrated image-based rock classes with lithofacies. Tracks from left to right: track 1: depth; track 2: 
formations; track 3: gamma ray (GR); track 4: bulk density (RHOB) and neutron porosity (NPHI); track 5: shallow (M2R1) and deep resistivity (M2RX); 
track 6: photoelectric factor (PEF); track 7: shear-wave slowness (DTS) and compressional-wave slowness (DTC), track 8: estimated total porosity 
and core porosity measurements; track 9: water saturation; track 10: comparison of permeability estimates (PERM 7RC)  and core permeability (Core 
Perm); track 11: core CT scan image; track 12: core photo; track 13: integrated rock classes; and track 14: previously identi  ed lithofacies.

 The optimized rock classes are in agreement with the 
visual appearance of the rocks and with the core-derived 
lithofacies. Figures 17, 18, and 19 show examples of results 
of image processing and rock classi  cation for selected depth 
intervals. Figure 17 shows how the extracted features help us 
to distinguish between three levels of cementation within the 
coarse-grained sandstones (Classes 1, 5, and 6). Figure 18 
shows the transition from the spiculite (Class 7) at the bottom 
to the gray-green marly limestone (Class 3) in the middle, to 
the brown carbonate (Class 2) at the top. Figure 19 shows the 
contact between the coarse-grained sandstone (Class 5) and the 
condensed section with belemnite fossils (Class 4). Figure 20 
shows the core photos of all the seven classes identi  ed in the 
interval of interest. Fig. 16—Field example, Well A: Porosity-permeability crossplot for all 

the available classes from three formations. Different colors represent 
different rock classes identi  ed through the introduced image-based 
rock classi  cation methodology.
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Fig. 17—Field example, Well A: Selected depth interval representing examples of image-based integrated Rock Classes 1, 5, and 6. Tracks from 
left to right: track 1: depth; track 2: core CT scan image; track 3: textural contrast derived from core CT scan image; track 4: textural energy derived 
from core CT scan image; track 5: core photo; track 6: color hue derived from core photo; track 7: color saturation derived from core photo; track 8: 
color intensity (value) derived from core photo; track 9: entropy derived from core photo; track 10: integrated rock classes; track 11: core porosity 
measurements; and track 12: core permeability measurements. 

Fig. 18—Field example, Well A: Selected depth interval representing examples of image-based integrated Rock Classes 2, 3, and 7. Tracks from 
left to right: track 1: depth; track 2: core CT scan image; track 3: textural contrast derived from core CT scan image; track 4: textural energy derived 
from core CT scan image; track 5: core photo; track 6: color hue derived from core photo; track 7: color saturation derived from core photo; track 8: 
color intensity (value) derived from core photo; track 9: entropy derived from core photo; track 10: integrated rock classes; track 11: core porosity 
measurements; and track 12: core permeability measurements. 
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Fig. 19—Field example, Well A: Selected depth interval representing examples of image-based integrated Rock Classes 4 and 5. Tracks from left to 
right: track 1: depth; track 2: core CT scan image; track 3: textural contrast derived from core CT scan image; track 4: textural energy derived from core 
CT scan image; track 5: core photo; track 6: color hue derived from core photo; track 7: color saturation derived from core photo; track 8: color intensity 
(value) derived from core photo; track 9: entropy derived from core photo; track 10: integrated rock classes; track 11: core porosity measurements; 
and track 12: core permeability measurements.

Fig. 20—Seven rock classes identi  ed from integrated image-based work  ow across three formations: RC-1: well-cemented sandstone; RC-2: brown 
limestone; RC-3: green-gray marly limestone; RC-4: condensed section with belemnite fossils; RC-5: sandstone with dispersed cementation; RC-6: 
coarse-grained poorly cemented sandstone; and RC-7: spiculite.

 The detected classes are also in agreement with the 
lithofacies and have an 86% prediction accuracy (Fig. 15). 
Rock Classes 1, 5, and 6 all belong to the coarse-grained 
shore-face deposits, modi  ed by differential diagenetic 
overprint, impacting their petrophysical properties. Rock 
Class 6 has 100-md to multi-Darcy permeability values 

for porosity values between 0.12 (v/v) to 0.30 (v/v). Rock 
Class 5 has dispersed cementation, but still has very high 
permeability of 100-md to multi-Darcy permeability values 
for porosity values ranging between 0.14 (v/v) to 0.30 
porosity (v/v). In contrast, the well-cemented Class 1 has low 
porosity (less than 0.10 porosity) and low permeability. The 
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cement content was assessed through visual interpretation 
of available slabbed core photos (Fig. 17, track 5). The 
cement is displayed as light-gray material in core photos. In 
the intervals with high-cement content, the entire interval is 
light-gray colored, while as the cement content decreases, 
the light-gray material appears as speckles. The composition 
of the observed cement material is calcite, as described in 
the RCA report. Rock Class 7 is spiculites with porosity 
values ranging between 0.15 to 0.30. Rock Classes 4 and 7 
belong to the same formation. However, Rock Class 4 has 
a 0.5 order of magnitude higher permeability than Rock 
Class 7 for the same porosity range between 0.15 and 0.30. 
Rock Classes 2 and 3 are the mudstone-wackstone carbonate 
deposits with permeability values less than 1 md and porosity 
values between 0.06 and 0.13 porosity. Figure 21 shows the 
confusion matrix results when comparing available lithofacies 
with the detected integrated rock classes in Well A. The 
sum of the values in each row of the matrix represents the 
number of samples of each lithofacies. The values in the main 
diagonal represent the number of samples correctly identi  ed 
by the proposed automatic rock classi  cation work  ow. The 
sum offset values of each row represent the total number of 
samples incorrectly classi  ed.

Fig. 21—Field Example, Well A: Confusion matrix of lithofacies and 
detected integrated rock classes. The main diagonal in the matrix 
represents the number of corrected identi  ed samples. The offset 
values represent incorrectly identi  ed samples. 

Assessment of Rock Classes in Offset Well B
 Figure 22 shows the result of rock classi  cation in the 
offset Well B obtained from conventional well logs and the 
information obtained from Well A. The classes have been 
predicted using a quantitative classi  cation algorithm trained 
with the obtained integrated rock classes and the well-log 
data available from Well A. Figure 22 also compares the 
estimated permeability values against available core data. 
Although the offset well has core data and core images, we 
did not use those for predicting rock classes or for deriving 
permeability models. We used core data available in the offset 
Well B to validate the predicted rock classes and estimated 
permeability. The permeability in Well B was estimated using 
the previously derived class-by-class permeability models 
of Well A. Propagation of the rock classes to Well B using 
the trained quantitative classi  cation algorithm shows good 
agreement with the lithofacies found in Well A. The lower 
half of the interval is dominated with the coarse-grained 
facies belonging to Rock Class 6, and the upper half is 
dominated by the carbonate facies of Rock Classes 2 and 3. 
Class-by-class estimated permeability models improve the 
agreement between core data and estimated permeability by 
20% (decrease in mean relative error) when compared with 
formation-by-formation permeability models.

DISCUSSION

 The image-based rock-fabric-related features computed 
in this work were extracted from two-dimensional (2D) 
representations of the rock volume (i.e., slabbed core photos 
and YZ transversal cut CT scan images). Consequently, the 
changes in rock fabric captured by the extracted image-based 
rock-fabric-related features are limited to the dimensions 
displayed in the employed images. Therefore, if 3D 
variations in rock fabric are required to properly characterize 
directional properties such as permeability, CT scan image 
stacks should be employed rather than 2D image data.  
 Rock classi  cation results obtained using a 
permeability-based cost function indicated a good 
correlation between image-based rock-fabric features 
and the measured permeability of the evaluated interval. 
However, the underlying physics of the employed images 
do not directly correlate to the physics of the  uid  ow. 
Furthermore, the resolution of the employed images is not 
high enough to capture the pore structure of the evaluated 
interval. Nevertheless, variations in rock fabric captured by 
the image-based rock-fabric features helped us to identify 
coarse-grained intervals from  ned-grained intervals 
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(via energy and contrast from core CT scan images). 
Distinguishing these fabric features enabled the detection of 
contrasting values of measured permeability and helped to 
improve permeability assessment. Additionally, the image-
based rock-fabric features, including color, saturation, and 
hue from core photos, allowed us to differentiate coarse-
grained intervals with different degrees of cementation. 
The different degrees in cementation resulted in contrasting 
measured permeability values in the evaluated interval. 
Therefore, image-based rock-fabric features derived from 
core CT scan images and core photos contain signi  cant 
information to identify different  ow units. 
  The incorporation of formation tops as numerical 
features may cause biased results in certain circumstances, 
for instance, in the hypothetical case of having three 
Formations A, B, and C with assigned numerical values 
1, 2, and 3, respectively. Formations A and C having 
similar petrophysical and geological properties will have 

Fig. 22—Field example, Well B: Propagated rock classes and permeability estimation. Tracks from left to right: track 1: depth; track 2: formations; 
track 3: gamma ray (GR); track 4: bulk density (RHOB) and neutron porosity (NPHI); track 5: shallow (M2R1) and deep resistivity (M2RX); track 6: 
photoelectric factor (PEF); track 7: shear-wave slowness (DTS) and compressional-wave slowness (DTC), track 8: core porosity measurements and 
estimated total porosity; track 9: water saturation; track 10: comparison of permeability estimates (PERM EST) and core permeability (Core Perm); 
track 11: core CT scan image; track 12: core photo; and track 13: propagated rock classes.

a relatively large Euclidean distance. On the other hand, 
Formations A and B having dissimilar petrophysical and 
geological properties will have a relatively small Euclidean 
distance. A possible solution to this challenge, assuming 
conventional well logs accurately capture the similarities and 
dissimilarities in petrophysical and geological properties, 
is the inclusion of conventional well logs as inputs for  the 
integrated rock classi  cation step in addition to image-based 
rock-fabric-related features. 
 The use of conventional well logs for the training of 
the quantitative classi  cation algorithm poses a challenge 
due to the differences in vertical resolution between 
the conventional well logs used to train the supervised 
algorithm and the core CT scan and core photos employed 
for the extraction of image-based rock-fabric features used 
for detection of the optimum number of rock classes. The 
rock classi  cation results in Well B were in good agreement 
with the previously identi  ed lithofacies in Well A. The 
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good agreement despite the resolution difference between 
the input data and the labels is a consequence of two main 
factors. First, the observed vertical variation in rock fabric 
in Well B was less compared to Well A. Second, it was 
possible to  ne-tune the boundaries between rock classes by 
means of a self-organizing map (SOM) or Kohonen map. 
SOM is an unsupervised multivariate data analysis method 
employed in clustering and dimensionality reduction for 
high-dimensional data visualization (Kohonen, 2013). The 
SOM enables a 2D grid visualization of the classes along 
with the relative value of the features (a pie chart per each 
grid box) that de  ne each class. This challenge can be further 
addressed by the integration of core CT scan images and 
core photos with image logs. The integration of image logs 
can help in the training of the supervised learning algorithm, 
providing an input with similar resolution as the core CT 
scan images and core photos.
 The proposed work  ow relies on the joint interpretation 
of both whole-core CT scan image data and slabbed core 
photos. However, other high-resolution wellbore/core image 
data could be used as an input to the proposed work  ow. For 
instance, acoustic image logs of suitable resolution could be 
used instead of whole-core CT scan images. Although the 
physical principles honored by these two types of wellbore/
core image data are different, both can be used as a proxy for 
formation density. In the case of the core photos, the use of an 
alternative wellbore/core image data is not straightforward. 
Other wellbore/core image data could be used, but it will 
not reveal the same information revealed by core photos. 
Therefore, the obtained rock classes are expected to be 
different than those obtained by the integration of whole-
core CT scan images and slabbed core photos. 

CONCLUSIONS

  We introduced a work  ow for automated identi  cation 
of rock classes using CT scan images, core photos, RCA data, 
and conventional well logs. The work  ow simultaneously 
optimizes the number and location of rock classes, as well 
as the permeability model for each class. The proposed 
approach reduces the time spent on visual rock classi  cation 
from core image data. Furthermore, the proposed work  ow 
incorporates physics through the use of a cost function, which 
minimizes the error between core-measured permeability 
(  uid  ow) and class-based estimated permeability to 
optimize the number of rock classes. The work  ow detected 
rock classes with 86% accuracy in the interval of interest 
compared against expert-derived lithofacies in Well A.  The 
confusion matrix revealed that Rock Classes 5 and 7 have 
the lowest and highest classi  cation accuracy, respectively. 

The use of class-based permeability models helped us 
to reduce the error in permeability estimates by 89% 
(decrease in mean relative error) compared to formation-
by-formation permeability estimates. It should be noted that 
the optimization of the number of image-based rock classes 
can be affected by the sampling rate and biased sampling. 
For instance, rock classes for which scarce or negligible 
permeability measurements were taken cannot be accurately 
distinguished. This suggests that the proposed approach can 
be used for the optimization of the core-sampling procedure.
 Results demonstrated that the image-based rock-fabric 
features derived from core photos and CT scan images 
capture textural and color variations in the evaluated depth 
interval. However, it should be noted that the use of an 
averaging window for textural features extraction can lead 
to smooth features, which in turn can cause poorly de  ned 
boundaries between different rock classes. Furthermore, the 
evaluated intervals can display gradual textural variation, 
making the de  nition of boundaries dif  cult, even for a 
human interpreter. 
 The proposed work  ow provides a fast and accurate 
assessment of image-based rock-fabric-related features 
that can be employed for quick assessment of lithofacies. 
Additionally, the automatic optimization of integrated rock 
classes aids in the estimation of accurate petrophysical 
properties by means of class-based petrophysical models. 
 Furthermore, integrated rock classes obtained in 
wells with wellbore/core image data can be employed for 
training of supervised learning algorithms and subsequent 
estimation of integrated rock classes in noncored wells 
(or cored wells without image data). The advantages 
of the proposed work  ow compared to the previously 
documented rock classi  cation methods include: (a) it not 
only automatically extracts rock-fabric features from image 
data using image analysis, but also incorporates rock physics 
from well logs and RCA data in petrophysical evaluation, 
(b) it simultaneously improves permeability estimates and 
optimizes the number of rock classes, and (c) it integrates 
well logs and core-scale images for the propagation of rock 
classes to noncored wells.
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NOMENCLATURE

Abbreviations
three dimensional
Bayesian Information Criterion
computed tomography
gray-level co-occurrence matrix
hue, saturation, and value
routine core analysis
red, green, and blue
self-organizing map

3D = 
BIC = 
CT = 

GLCM = 
HSV = 
RCA = 
RGB = 
SOM = 

Symbols
intracluster dissimilarity of the
i-th sample
averaged gray-level value
averaged textural feature
intercluster dissimilarity of the i-th
sample
cost function a x rock classes, md
i-th, j-th element of the GLCM
gray-level value of the i-th pixel at a
given row
lag distance, pixels
core permeability, md
estimated permeability, md
total number of pixels per row
total number of pixel pairs at lag
distance h
total number of core permeability
measurements
gray-level value  
silhouette coef  cient of the i-th sample
textural feature of the i-th pixel at a
given row
experimental variogram

ai = 

AvgGL = 
AvgTF = 

bi = 

C = 
G(i,j) = 

GLi = 

h = 
kCore = 
kest = 
N = 

Nl = 

Nperm = 

pi =   
si = 

TFi = 

 = 
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