High-Angle and Horizontal Well Special Interest Group
September 20, 2005
Location: ExxonMobil Upstream Technical Training Center, Houston, Texas

Attendees - approximately 70 people. Those who signed the attendance list included:

<table>
<thead>
<tr>
<th>Attendee</th>
<th>Company/Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rob Algie (Schlumberger)</td>
<td>Mark Haugland (Pathfinder)</td>
</tr>
<tr>
<td>Ismail Altintutar (BHI)</td>
<td>Denis Heliot (Schlumberger)</td>
</tr>
<tr>
<td>Eugene Badea (Pathfinder)</td>
<td>Frank Hearn (Baker Hughes)</td>
</tr>
<tr>
<td>Ahmed Badruzaman (Chevron)</td>
<td>Jack Horkowitz (Schlumberger)</td>
</tr>
<tr>
<td>Matt Benefield (Baker Hughes)</td>
<td>Dave Hinz (Halliburton)</td>
</tr>
<tr>
<td>William Blount (ExxonMobil)</td>
<td>Jim Holl (ExxonMobil)</td>
</tr>
<tr>
<td>Jeff Brami (ExxonMobil)</td>
<td>Herb Illfelder (Pathfinder)</td>
</tr>
<tr>
<td>Andy Brooks (Inteq)</td>
<td>Segun Jebutu (Baker Hughes)</td>
</tr>
<tr>
<td>Michael Bittar (Halliburton)</td>
<td>Stu Keller (ExxonMobil)</td>
</tr>
<tr>
<td>David Byrd (Devon)</td>
<td>Jim Klein (ConocoPhillips)</td>
</tr>
<tr>
<td>Thierry Chabernaud (Schlumberger)</td>
<td>Shanjun Li (UH)</td>
</tr>
<tr>
<td>Ji Chen (UH)</td>
<td>Qiming Li (Schlumberger)</td>
</tr>
<tr>
<td>J. B. Clavaud (Chevron)</td>
<td>Bob Lieber (BP)</td>
</tr>
<tr>
<td>Carlos Contreras (Pathfinder)</td>
<td>Richard Liu (UH)</td>
</tr>
<tr>
<td>Sofia Davydycheva (Schlumberger)</td>
<td>Darren McLendon (ExxonMobil)</td>
</tr>
<tr>
<td>Michael Frenkel (Baker Atlas)</td>
<td>Steve Mack (Precision)</td>
</tr>
<tr>
<td>Ingo Geldmacher (Precision)</td>
<td>Alberto Mendoza (UT-Austin)</td>
</tr>
<tr>
<td>Allen Gilchrist (Baker Hughes)</td>
<td>Rune Musum (ExxonMobil)</td>
</tr>
<tr>
<td>Dean Gallick (Chevron)</td>
<td>Jim Oberkircher (IADD)</td>
</tr>
<tr>
<td>Wei Jun Guo (Pathfinder)</td>
<td>Quinn Passey (ExxonMobil)</td>
</tr>
<tr>
<td>Terry Hagiwarra (Shell)</td>
<td>Neal Peeler (Baker Hughes)</td>
</tr>
<tr>
<td>Rich Hardman (6FF40)</td>
<td>Richard Pelling (Paradigm)</td>
</tr>
</tbody>
</table>

Agenda:

<table>
<thead>
<tr>
<th>Time</th>
<th>Session Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00 - 9:15</td>
<td>Welcome, Logistics, and Introductions (Michele Thomas/Quinn Passey)</td>
</tr>
<tr>
<td>9:15 - 9:45</td>
<td>SIG organization and business (Terry Quinn)</td>
</tr>
<tr>
<td></td>
<td>- Overview of SIG objectives</td>
</tr>
<tr>
<td></td>
<td>- Election of officers</td>
</tr>
<tr>
<td></td>
<td>- House rules</td>
</tr>
<tr>
<td>9:45 - 11:30</td>
<td>Introduction of HA/HZ issues - invited talks</td>
</tr>
<tr>
<td>9:45 - 10:15</td>
<td>Drilling process and depth control – Jim Oberkircher (IADD)</td>
</tr>
<tr>
<td>10:00 - 10:15</td>
<td>Break</td>
</tr>
<tr>
<td>10:15 - 10:45</td>
<td>FE issues – Jim Klein (Conoco Phillips)</td>
</tr>
<tr>
<td>10:45 - 11:15</td>
<td>Integration of data and visualization – Lisa Towery (BP)</td>
</tr>
<tr>
<td>11:15 - 11:45</td>
<td>Summary of learnings from Taos – Quinn Passey (ExxonMobil)</td>
</tr>
<tr>
<td>11:45 - 12:30</td>
<td>Lunch</td>
</tr>
<tr>
<td>12:30 - 1:45</td>
<td>Breakout groups - Possible topics could include:</td>
</tr>
<tr>
<td></td>
<td>A) Drilling process and depth control</td>
</tr>
<tr>
<td></td>
<td>B) Formation Evaluation 1</td>
</tr>
<tr>
<td></td>
<td>C) Integration of data into geologic and reservoir models</td>
</tr>
<tr>
<td></td>
<td>D) Formation Evaluation 2</td>
</tr>
<tr>
<td>1:45 - 2:00</td>
<td>Break</td>
</tr>
<tr>
<td>2:00 - 3:00</td>
<td>Report out from groups 10 minutes each (Flipcharts)</td>
</tr>
<tr>
<td>3:00 - 3:20</td>
<td>Review and/or develop action items (Terry Quinn)</td>
</tr>
<tr>
<td>3:20 - 3:30</td>
<td>Set time and location for next meeting</td>
</tr>
<tr>
<td>3:30</td>
<td>Adjourn</td>
</tr>
</tbody>
</table>
1) **Draft HA/HZ SIG Objective:** The HA/HZ SIG is devoted to help the petroleum community (Geology, Geophysics, Formation Evaluation, Drilling, Reservoir Engineering) understand the challenges associated with the acquisition, interpretation, and integration of HA/HZ wellbore data.

2) **Business items:**
 - **Objectives of SIG:**
 - Learn how HA/HZ data impacts other geo/eng disciplines
 - Bring in other disciplines
 - **Communicate issues to other disciplines and organizations (e.g., IADD)**
 - **Officers**
 - 2 co-chairs
 - Term 1 year
 - Organize 2 meetings/year
 - Record meeting summary; post on SPWLA website;
 - Possibly publish summary in Petrophysics
 - Maintain e-mail distribution list for SIG (about 200 names currently)
 - **Liaison to other organizations**
 - SPE drilling
 - WITSML data transfer
 - SPWLA and/or other SIGs
 - IADD
 - **Committee chairs for action items; subtopics, subcommittees**

3) **Summary of technical presentations:**
 a) Drilling process and depth control - Jim Oberkircher (IADD)
 - “If you can draw it, you can drill it”
 - Brief history presented on HA/HZ enablers (jetting, BHA control, Mud motors, steering tools, MWD/LWD, steerable motors, adjustable BHAs, Rotary Steerables)
 - Stretching the horizon – now 15-20k meter horizontal wells are possible; imagine the amount of depth control required; new examples – 4 horizontal wells of 15 km length exposes 13.6 km of reservoir, and this has been done
 - Major issues
 - Directional capabilities
 - Spatial orientation – survey and depth control
 - Depth control is a major issue by itself
 - Data rates/data density – always a tradeoff between survey and FE data
 - Hitting a moving a target; geo-steering is hard; when the target moves, a high price may need to be paid as a result of introducing new problems
 - Where are we?
 - Ellipse of uncertainty – the ellipse grows as you extend the well
 - Depth of uncertainty
 - Uncertainty of the uncertainty
 - IADD will be happy to participate in this SIG going forward
- Question from audience: Many in FE are at odds on objectives with drilling. How can communications be improved? Ans: Need to show that objectives are aligned, don’t back down, put needs in money terms

b) Log Interpretation – High Angle & Horizontal Wells - Jim Klein (ConocoPhillips)
- Industry-wide departure data presented. ERD average > 45 deg.
- Advanced objectives
 - Pay properties
 - Horizontal wells give high volumes of data, but not thickness
 - Lithofacies
 - Strength & stress
 - Fractures
 - Vertical distance to boundaries & fluids
- Problems & issues
 - Different geometry between logging tools
 - Data density
 - Positioning control
 - Cannot blindly interpret
- Vertical Well Paradigm
 - 2-D geometry
 - Tool volume of investigation different than radial
 - Thin beds
 - Resistivity logs unaffected by anisotropy
- Horizontal wells
 - 3-D geometry
 - Radial symmetry disappears
 - Non-symmetric geometry relative to the formation
 - Non-symmetric invasion
- Simulation of mud filtrate invasion
- Oil companies may not use porosity tools in HA/HZ wells much if:
 - reservoir is understood
 - reduces drilling rate
 - risk
 - increase expense
 - but later may find that they need the data to insert in model
- Conclusion/summary
 - Geometric effects can greatly complicate evaluation of HA/HZ wells
 - There is a need to see further from the borehole
 - Directional measurements are needed
 - Routine acquisition of image logs needed
 - Azimuthal density & resistivity useful
 - Need horizontal resistivity in horizontal wells
- Audience comments: need drilling friendly tools; sampling in horizontal wells, considering amount of formation traversed, may require different sampling than vertical wells….may actually be getting higher vertical sampling density as a result of small change in vertical distance, but horizontal sampling may be
c) Integration of data and visualization - Lisa Towery (BP)
- Communication is important
- Three essential areas – Well planning, Geosteering, Correlation
- Well Planning
 - Optimize reservoir access
 - stay within the reservoir
 - encounter multiple zones
 - intersect max number of fractures
 - Prevent wellbore collision
- Issues
 - Depth tie
 - are there other wells in the area? checkshots?
 - Seismic image quality
- 3 Examples provided demonstrating well planning for different purposes
 - down dip syncline for steam-gravity drainage
 - attic oil
 - encountering fractures
- various visualization techniques demonstrated for resolving different well planning purposes
- Visualization for Geosteering
 - computer-aided
 - other methods, cuttings samples
- Issues
 - stay within zone of interest
 - react
 - frequency of survey point updates – data may come in quicker than can interpret
- Interpretation of data workflow
 - develop conceptual model
 - generate 3D framework
 - 3D cellular grid
 - populate with rock properties
 - upscale (not always) for flow simulation
- Gridding Issues
 - putting horizontal wells in a grid requires locally refined grids, but is difficult, therefore need radial refinement
 - HA/HZ wells may not represent the reservoir well path; may encounter better or worse reservoir than is the average. This needs to be taken into consideration.
 - Upscaling throws out lots of data by averaging.

Nirvana – real time model updating!
d) Summary of learnings from 2004 Taos Topical Conference - Quinn Passey (ExxonMobil) - Taken largely from 2005 SPWLA Transactions Paper A by Passey et al.)

- Who’s at the current SIG?
 - 200 people on the e-mail distribution
 - ~ 70 attended
 - 22 attended the Fall 2004 HA/HZ Topical Conference in Taos
 - 55% from service companies or vendors
 - 33% from operating companies
 - 7% from university
 - 5% other

Survey Results:
- Near unanimous agreement between oil and service companies:
 - More geometry information needed
 - More azimuthal sensors
 - Need quantitative interpretation in addition to qualitative
- Slight differences between oil and service companies
 - Lack of correction charts
 - Which single LWD curve should be used for Rt
 - LWD and wireline accuracy

Conference Learnings:
- Our ability to drill HA/HZ wells is ahead of our ability to interpret
- Although qualitative interpretation is common (e.g. geosteering), increasing need for quantitative results - standard logs may not be accurate enough for FE
- Current correction charts (or modeling software) for many instruments are inadequate (or non-existent); however, most interpreters don’t want to become tool physicists
- Different interpretation paradigms exist for vertical and horizontal wells
- Service companies focus on developing new tools and not in understanding response in HA/HZ wells;
- Oil companies need to share data to show issues and limitations
- “As an industry, we are not as smart as we thought we were”

Conference Recommendations:
- Initiate HA/HZ SIG
- More azimuthal/directional instruments
- Tools that are focused on specific depth of investigation (e.g., 2’)
- Technology to look away from the borehole and ahead of the bit

4) Breakout group discussions:

Group A) Drilling and depth control (“All I need is a GR”) -
- Report out by Andy Brooks (Baker Hughes)
 - Depth control
 - Positional control
 - Better measurements – quantify uncertainty; cost effective way of reducing
• Industry standard (?); process
• Intra-discipline bridge to address
• Consistent surveying and calculation methodology
• Pipe measurements
• CCL type marker (?)
• Survey frequency – optimal
• Moving logging data relative to surveys
• Critical measurements and impact on crucial business decisions
• Need a JIP or JI Standard?
• Guidelines for critical wells
• Relative position of sensors
• 3D seismic
• Seeing ahead of the bit
1) The solution is multifaceted and multi-discipline
2) Coordinate activities with SPE sub-committee
3) Need to “advertise” results
4) Presentation to SIG by member of SPE subcommittee

Group B) Formation Evaluation (The Practicals)
- Report out by Richard Pelling (Paradigm)
 • What is FE?
 • Scale – logging tool, DST
 • Mud logging
 • Communicating value of FE
1) What do we need:
 • Visualize 3D system & data
 • Apparent dip
 • Integrate into model
 • Volume of investigation
 • Economic constraints – short or long term view
 • Maturity of field and regulation constraints (not able to drill where we want)
 • Design of logging program
 • Completion design influencing logging
2) Azimuthal density (heart Æ good)
 • GR (heart Æ good)
3) Neutron – questionable values, source? (sad face Æ not good)
 • Too many curves, need them… but good for resistivity inversion
 • Consistency of assumptions between processing and delivery
 • Wellsite data are only initial “quicklook”… simplifying assumptions
 • HZ vs. vertical well; geometry (beds) geology; log measurement
 • Partitioning; horizontal and vertical variation? Can we understand it?
4) Ideal world
 • Better teamwork between service co. and operator and between disciplines
 • Well planned to produce … able to react to changes during job
• Other measurements?
 o Azimuthal resistivity
 o Azimuthal acoustic
 o Anisotropy
 o Deep reading directional resistivity
 o Seismic?

Group C) Geologic and Reservoir Modeling (The Integrators)
- Reported out by Cesar Portilla (Inteq)
 • Issues “problems”
 • Cost to obtain the correct data (time is a key parameter when acquiring data)
 • In exploration, getting data is possible only when critical
 • Management needs to be aware of the importance
 • Not getting enough data in development wells
 • Development wells are horizontal, and there are problems when incorporating these wells to the original model
 • HA wells – own by drillers
 • Additional data can reduce the uncertainty
 • Real time model update
 • Joint inversion concept incorporating all tool measurements
 • Depth issues
 • Some challenges currently exist that are not handled by current technology – new tools needed
 • Upscaling issues
 • HA data handling when doing Reservoir/Geologic models
 • Porosity bias in HA wells

Group D) Formation Evaluation 2 (The Troublemakers)
- Report out by Ahmed Badruzzaman (Chevron)
1) Issues
 • GR only – cost of logging; losing data
 • “Quality” of data – information content
 • Lack of experience with LWD data
 • Lack of typical models (need OpCo input)
 • Tool response in HA/HZ of current tools?
 • Different DOI (depth of investigation); which curve(s) to use?
2) Good
 • Image log: bed boundary; dip picking
 • Resistivity inversion: Where it exists, it adds value
 • Density being directional; other sensor and becoming directional
 • More than GR are being run; more R de ore (couldn’t read?)
3) Bad
 • Available inversion technology under developed or underutilized
 • Value proposition? Have “we” made a case
• OpCo's not using available advanced (3D) processing software service companies have – OPCO’s don’t want to pay for it; lots of manpower involved for service companies
• Education – service companies and OPCOs; value at BU level
• Resistivity is “biggest” question? What about porosity?

4) Ideal
a) New tools and more inversion; more sensors
 o Azimuthal neutron
 o All sensors Azimuthal, similar DOI? Similar tool axis resolution
 o Nuclear tools with better statistics
b) Induction-type inversion of nuclear tools; non-Monte Carlo modeling
c) Low cost
d) Drill vertical for information; HA/HZ to maximize production

5) SIG Business:
• Terry Quinn and Quinn Passey (“paraquins”) elected to serve as SIG co-chairs for next 1 year (two additional meetings)
• In addition, a steering committee was formed to better define objective of SIG and agenda for the next meeting, with the following volunteers:
 o Ed Stockhausen – Chevron
 o Jeff Brami – ExxonMobil
 o Mark Hoagland – Pathfinder
 o J. B. Clavaud – Chevron
 o Jim Klein – Conoco Phillips
 o John Rasmus – Schlumberger
 o Terry Quinn – Baker Hughes
 o David Byrd - Devon
 o TBD – BP

6) Parking Lot (items that may or may not have been addressed adequately):
• Define roles and direction
• SPE Technical group on wellbore positioning
• Liaisons with other groups
• Log-resolution 3D seismic (wish list)
• Continuous coring in HZ wells
• Difficult to determine value of data if we didn’t collect info initially

7) Action Items:
• SIG to begin to develop value proposition (what went right vs. where went wrong with decision based on HA/HZ wells)
• OpCo’s bring an example to share at next SIG meeting
• Post-mortem – share (form subcommittee in each OpCo)
• Scope out issues for publication
• All to look for published HA/HZ examples for discussion at next SIG meeting
• Next SIG meeting January or February 2006 – location TBD
8) Meeting Performance:

<table>
<thead>
<tr>
<th>What went well?</th>
<th>What would you change?</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Location</td>
<td>• Hands-on examples</td>
</tr>
<tr>
<td>• Lunch/food</td>
<td>• More “meat”</td>
</tr>
<tr>
<td>• FE centric (perhaps too much so?)</td>
<td>• Too FE centric audience</td>
</tr>
<tr>
<td>• Breakouts</td>
<td>• Light OpCo participation</td>
</tr>
<tr>
<td>• Invited presentations</td>
<td>• Better tie with SPE</td>
</tr>
<tr>
<td>• Brain teasers (ice breaker)</td>
<td>• Better tie with other SIGs</td>
</tr>
<tr>
<td>• Technical topic (HA/HZ)</td>
<td>• Marketing – need to spread word of our existence</td>
</tr>
<tr>
<td>• Format of meeting</td>
<td></td>
</tr>
<tr>
<td>• Length of meeting</td>
<td></td>
</tr>
</tbody>
</table>